Методичка для курсового проектирования по ПТЦА (прикладная теория цифровых автоматов)
2Антик М.И. 11_03_91 МИРЭА
_АЛГОРИТМЫ ПРОЦЕДУРНОГО ТИПА. ОПЕРАЦИОННЫЕ УСТРОЙСТВА
Алгоритмы этого типа являются следующим этапом обобщения
описаний вычислительных процессов. Теперь, по сравнению с ал-
горитмами автоматного типа, на каждом шаге, помимо модифика-
ции памяти, идентифицирующей шаг алгоритма, разрешается изме-
нять любую другую память устройства локально (по частям) или
глобально (всю сразу).
Устройство-исполнитель алгоритма этого типа будем назы-
вать операционным устройством (ОУ).
ОУ можно рассматривать как один синхронный автомат со
сложно структурированной памятью — состоянием часть памяти
используется для идентификации шага алгоритма, остальная па-
мять используется для запоминания промежуточных данных, вы-
числяемых в процессе последовательного, по шагам, выполнения
алгоритма. Такая модель вычислителя особенно удобна для рас-
чета продолжительности одного такта работы устройства.
Другой удобной моделью вычислителя является совокуп-
ность взаимодействующих синхронных автоматов, один из которых
называется управляющим автоматом (УА), а объединение всех ос-
тальных автоматов называется операционным автоматом (ОА).
УА является исполнителем алгоритма автоматного типа, ко-
торый входит составной частью в любой алгоритм процедурного
типа. Кроме того, УА инициирует действия отдельных шагов ал-
горитма и участвует в их выполнении.
ОА выполняет все вычисления на отдельных шагах алгоритма
под управлением УА; кроме того, к ОА удобно отнести все вы-
числения предикатных функций, оставив УА только анализ вычис-
ленных предикатных значений.
Прежде чем переходить к точным терминам, рассмотрим сле-
дующиe примеры алгоритмов процедурного типа.
Например, каноническое описание синхронного конечного
автомата может быть интерпретировано (истолковано) как одно-
шаговый алгоритм процедурного типа.
█
┌──────┐ │
│ ┌──V──V─────┐
│ │ B=FO(S,A) │
│ │ │
│ │ S =FS(S,A)│
│ └─────┬─────┘
└─────────┘
Исполнитель этого алгоритма состоит только из ОА. На
каждом шаге этого алгоритма изменяется вся память устройства,
поэтому управление памятью не требуется, идентифицировать ша-
ги этого алгоритма не надо.
Например, инкрементор с одноразрядным входом и однораз-
рядным выходом может быть реализацией следующих преобразова-
ний
█
█ p =1 █
█
┌────────┐ │
│ ┌─────V─V───────┐
│ │ (p , b) = a+p │
│ └───────┬───────┘
└──────────┘
— 2 —
ОА, реализующий инкрементор в целом, будет следующим
┌──┬─┐
a ──────────────────┤HS│S├────_b
┌─┬─┐p │ │ │
начальное значен.─┤S│T├──┤ │P├──┐
├─┤ │ └──┴─┘ │
SYN ─────────/C│ │ │
┌┤D│ │ │
│└─┴─┘ │
└───────────────┘
Конечно, эта реализация совпадает с реализацией алгоритма ав-
томатного типа, если состояние р1 кодируется 1, а состояние
р0 — 0.
Этот пример показывает,что до начала вычислений может
потребоваться начальная установка памяти. На самом деле это
необходимо было уже в алгоритмах автоматного типа, так как
код начального состояния требует предварительной установ-
ки. Ограничимся здесь обозначением этой проблемы, а решение
ее, связанное прежде всего с корректной синхронизацией ус-
тройства в первом такте его работы, рассмотрим ниже.
При рассмотрении процедуры построения автомата Мура эк-
вивалентного автомату Мили , не обсуждалась простая возмож-
ность ее реализации и на структурном уровне. Например, только
что рассмотренный автомат Мили может быть преобразован в эк-
вивалентный автомат Мура по одному из следующих вариантов
┌┬─┬┐t┌──┬─┐ ┌──┬─┐ ┌┬─┬┐
a ──_┤│T│├_┤HS│S├─_b a ─────_┤HS│S├─_┤│T│├─_b
─/┴┴─┴┘ │ │ │ │ │ │─/┴┴─┴┘
C │ │ │ C │ │ │ C
─/┬┬─┬┐p│ │ │ ─/┬┬─┬┐p│ │ │
┌_┤│T│├_┤ │P├┐ ┌_┤│T│├_┤ │P├┐
│ └┴─┴┘ └──┴─┘│ │ └┴─┴┘ └──┴─┘│
└─────────────┘ └─────────────┘
При таких структурных преобразованиях проще истолковы-
вать алгоритмы как процедурные.
█ █
█ p =1; t =0 █ █ p =1 █
█ █
┌────────┐ │ ┌────────┐ │
│ ┌─────V─V───────┐ │ ┌─────V─V───────┐
│ │t =a;(p ,b)=t+p│ │ │ (p , b) = a+p │
│ └───────┬───────┘ │ └───────┬───────┘
└──────────┘ └──────────┘
БЛОК-ТЕКСТ. Способ описания автоматного алгоритма после
некоторых дополнений может быть использован и для описания
алгоритмов в процедурной форме
Блок-текст состоит из трех частей
1)- Описание переменных и начальных значений памяти.
2)- Описания функций и связей. Записываются любые функции и
функциональные связи (в том числе предикатные), не использу-
ющие запоминания. Переменные из левой части операции присва-
ивания таких функциональных описаний используются в блоках
процедуры.
3)- Процедура, состоящая из блоков (микроблоков) операторных
и блоков переходов
— операторные — в скобках вида {…..},
— перехода — в скобках вида <<...>>;
и те, и другие блоки могут снабжаться метками, стоящими перед
блоком. В блоках перехода используется оператор GO в одной
из двух форм
GO m — безусловный переход,
GO (P; m0,m1,m2,…) — условный переход.
здесь m0,m1,… — метки блоков,
P — предикатное значение,интерпретируемое оператором GO
— 3 —
как неотрицательное целое число, являющееся порядковым номе-
ром метки в списке меток оператора GO. С этой метки должно
быть продолжено выполнение алгоритма. Блоки условных перехо-
дов эквивалентны предикатным вершинам блок-схемы алгоритма.
На следующем более сложном примере демонстрируется пос-
ледовательность синтеза операционного устройства.
Пример. Вычислитель наибольшего общего делителя (НОД)
двух натуральных чисел (8-разрядных).
1) Разработаем интерфейс вычислителя
8 ┌──┬─────┬──┐
═══╪═>╡I1│ НОД │ │
│ │ │ │ 8
8 │ │ │D ╞══╪══>
═══╪═>╡I2│ │ │
├──┤ ├──┤
─────>┤rI│ │rO├─────>
├──┤ │ │
─────>┤ C│ │ │
└──┴─────┴──┘
I1[7..0], I2[7..0] -входные информационные шины.
rI -входной сигнал готовности если rI=1, то на входах I1,
I2 готовы операнды.
D[7..0] -выходная информационная шина .
rO -выходной сигнал готовности если rO=1, то готов резуль-
тат на шине D, который сохраняется до появления новых операн-
дов.
2) Математическое обоснование алгоритма вычислений
Идея алгоритма, следуя Евклиду (IIIв. до р.Х.), заключа-
ется в том, что НОД двух натуральных чисел А и В в случае ра-
венства этих чисел совпадает с любым из них, а в случае их
неравенства совпадает с НОД двух других чисел меньшего и
разности между большим и меньшим. Последовательно, уменьшая
числа, получим два равных числа -значение одного из них и бу-
дет НОД исходных чисел.
3) Блок-схема алгоритма (микропрограмма в содержательном
виде)
— 4 —
█
│
┌──────V──────┐
m1│ rO = 0 │
└──────┬──────┘
│┌──────────────────┐
││┌─────┐ │
─VVV─ │ │
/ 0 │ │
< rI>─────┘ │
_/ │
│1 │
┌──────V──────┐ │
│ rO = 0 │ │
│ │ │
m2│ А = I1 │ │
│ │ │
│ B = I2 │ │
└──────┬──────┘ │
┌───────────────────┐│ │
│ ┌─────VV──────┐ │
│ m3│ (p,S)=A — B │ │
│ └──────┬──────┘ │
│ ─V─ m6 │
│ / =0 ┌──────────┐│
│ z ───>┤ rO =1;D=A├┘
│ __/ └──────────┘
│ │╪0
│ V
│ 0 / 1
│ ┌───────< p >────────┐
│ ┌───────V──────┐ _/ ┌───────V──────┐
│m4│ (x,B )=-A+B │ m5│ (x,A )=A — B │
│ └───────┬──────┘ └───────┬──────┘
└──────────┴────────────────────┘
Или в виде блок-текста
I1[7..0], I2[7..0] —входные шины
D[7..0] —выходная шина
rI, rO —сигналы готовности
A[7..0] , B[7..0] —память текущих значений
S[7..0] —разность
z, p —предикатные переменные
z=┐(!/S) —сжатие(свертка) S[7..0] по ИЛИ-НЕ
—можно записать иначе z=(S==0)
D=A
——————————————————————-
m1{rO =0}
g1<
m2{rO =0; A =I1; B =I2}
m3{(p,S)=A-B}
<
g2<
m4{(x,B )=-A+B}
<
m5{(x,A )= A-B}
<
m6{rO =1}
<
— 5 —
4) Разработка функциональной схемы операционного автомата.
В ОА должны быть реализованы все переменные с памятью и
без,а также вычислительные операции,используемые в алгоритме.
A ╔══════════════════════════════>D
─/┬┬──┬┐ ║ ┌────────────┐
C││RG││ ║ │ f1=(A-B) │
││ ││ ║ A│ │
I1═════>══>╡│ │╞══╝ ═>╡ f2=(-A+B)│ ┌─┐
││ ││ │ │S S│1│
││ ││ │ ╞> ═>┤ o───>z
┴┴──┴┘ │ │ │ │
B │ │ └─┘
─/┬┬──┬┐ │ │
C││RG││ │ ├────────────>p
││ ││B B│ │
I2═════>═>╡│ │╞> ═>╡ │ ─/┬┬─┬┐
││ ││ │ │ C││ │├>rO
││ ││ │ │ ││ ││
rI─────>┴┴──┴┘ └────────────┘ └┴─┴┘
Кроме того, в ОА необходимо реализовать все информацион-
ные связи, соответствующие микрооперации коммутации, а также
микрооперации запоминания (загрузки, записи) и обнуления.
╔══════════════════════════════════════════════╗
║ A ╔══════════════════════║═══════>D
║ ┌────┐ ─/┬┬──┬┐ ║ ┌────┐ ┌──────┐ ║
║ │ MUX│ C││RG││ ║ │M2*8│ 1─>┤cr SM│ ║
╠═>┤0 │ ││ ││ ║ │ │ ├─ │ ║
I1══║═>┤1 ╞══════>╡│ │╞══╩══>╡ ╞═══>╡I1 │ ║ ┌─┐
║ ├ │ ││ ││ A │ │ │ │ ║ │1│
║ │А │ W││ ││ ├─ │ │ S╞═╩>╡ o───>z
║ └A───┘ ─A┴┴──┴┘ └A───┘ │ │ │ │
║ │ │ │ │ │ └─┘
║ umA uA uiA │ │
║ B │ │
║ ┌────┐ ─/┬┬──┬┐ ┌────┐ │ │
║ │ MUX│ C││RG││ │M2*8│ │ p├─────────>p
╚═>╡0 │ ││ ││ B │ │ │ │
I2════>╡1 ╞══════>╡│ │╞═════>╡ ╞═══>╡I2 │ C
├ │ ││ ││ │ │ │ │ ─/┬┬─┬┐
│А │ W││ ││ ├─ │ │ │1─>┤│T│├>rO
└A───┘ ─A┴┴──┴┘ └A───┘ └──────┘R W││ ││
│ │ │ ─A─A┴┴─┴┘
uMB uB uiB urO uwO
5) Формулировка требований к управляющему автомату.
При формировании управляющих сигналов следует обратить
внимание не только на операции, которые необходимо выполнить
на данном шаге, но и на те оперции, которые нельзя выполнять
на этом шаге, это — как правило, операции изменения памяти.
Будем считать, что операция активна, если значение уп-
равляющего сигнала равно 1.
— 6 —
Для управления вычислениями на каждом шаге алгоритма
потребуются следующие управляющие сигналы
║umA│umB│uwA│uwB│uiA│uiB│urO│uwO│
══╬═══╪═══╪═══╪═══╪═══╪═══╪═══╪═══╡
m1║ │ │ │ │ │ │ 1 │ 0 │
──╫───┼───┼───┼───┼───┼───┼───┼───┤
m2║ 1 │ 1 │ 1 │ 1 │ │ │ 1 │ 0 │
──╫───┼───┼───┼───┼───┼───┼───┼───┤
m3║ │ │ 0 │ 0 │ 0 │ 1 │ │ 0 │
──╫───┼───┼───┼───┼───┼───┼───┼───┤
m4║ │ 0 │ 0 │ 1 │ 1 │ 0 │ │ 0 │
──╫───┼───┼───┼───┼───┼───┼───┼───┤
m5║ 0 │ │ 1 │ 0 │ 0 │ 1 │ │ 0 │
──╫───┼───┼───┼───┼───┼───┼───┼───┤
m6║ │ │ 0 │ │ │ │ 0 │ 1 │
──╨───┴───┴───┴───┴───┴───┴───┴───┘
В незаполненных клетках сигналы безразличны.
Заметив, что umA = umB , uiB = ┐uiA , окончательно полу-
чаем
╔══════════════════════════════════════════════╗
║ A ╔══════════════════════║═══════>D
║ ┌────┐ ─/┬┬──┬┐ ║ ┌────┐ ┌──────┐ ║
║ │ MUX│ C││RG││ ║ │M2*8│ 1─>┤cr SM│ ║
╠═>╡0 │ ││ ││ ║ │ │ ├─ │ ║
I1══║═>╡1 ╞══════>╡│ │╞══╩══>╡ ╞═══>╡I1 │ ║ ┌─┐
║ ├ │ ││ ││ │ │ │ │ ║ │1│
║ │А │ W││ ││ ├─ │ │ S╞═╩>╡ o───>z
║ └A───┘ ─A┴┴──┴┘ └A───┘ │ │ │ │
║ └────┐ ┌─┘ B ┌────┘ ├─ │ └─┘
║ ┌────┐│ │─/┬┬──┬┐ │ ┌────┐ │ │
║ │ MUX││ │ C││RG││ │ │M2*8│ │ p├─────────>p
╚═>╡0 ││ │ ││ ││ │ │ │ │ │
I2════>╡1 ╞│═══│═>┤│ │╞══│══>┤ ╞═══>╡I2 │
├ ││ │ ││ ││ │ │ │ │ │
│А ││ │ W││ ││ │ ├─ │ │ │ C
└A───┘│ │─A┴┴──┴┘ │ └A───┘ └──────┘ ─/┬┬─┬┐
│ │ │ └─┐ │ ┌─┐│ 1─>┤│T│├>rO
│ │ │ │ ├>┤ o┘ R W││ ││
├────┘ │ │ │ └─┘ ─A─A┴┴─┴┘
umB uwA uwB uiA urO uwO
—│———│—-│——│———————-│-│——
y1 y2 y3 y4 y5 y6
║y1│y2│y3│y4│y5│y6│
══╬══╪══╪══╪══╪══╪══╡
m1║ │ │ │ │ 1│ 0│
──╫──┼──┼──┼──┼──┼──┤
m2║ 1│ 1│ 1│ │ 1│ 0│
──╫──┼──┼──┼──┼──┼──┤
m3║ │ 0│ 0│ 0│ │ 0│
──╫──┼──┼──┼──┼──┼──┤
m4║ 0│ 0│ 1│ 1│ │ 0│
──╫──┼──┼──┼──┼──┼──┤
m5║ 0│ 1│ 0│ 0│ │ 0│
──╫──┼──┼──┼──┼──┼──┤
m6║ │ 0│ │ │ 0│ 1│
──╨──┴──┴──┴──┴──┴──┘
— 7 —
Структура вычислителя
┌────────────────────────────────┐
══>╡I1 │
│ │
══>╡I2 ОА D╞══>
│ │
┌──/C rO├──>
│ │ │
│ │z p umB uwA uwB uiA urO uwO │
│ └┬──┬──A───A───A───A───A───A─────┘
│ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │
│ ┌V──V──┴───┴───┴───┴───┴───┴─────┐
│ │z p y1 y2 y3 y4 y5 y6 │
│ │ │
┴──/C │
│ УА │
──>┤rI │
└────────────────────────────────┘
УА должен выполнять следующий алгоритм автоматного типа,
представленный в виде блок-текста
m1{xxxx10}
g1<
m2{111×10}
m3{x000x0}
<
g2<
m4{0011×0}
<
m5{0100×0}
<
m6{x0xx01}
<
_МИКРОПРОГРАММИРОВАНИЕ. ОПРЕДЕЛЕНИЯ.
МИКРООПЕРАЦИЯ — базисное (элементарное) действие, необ-
ходимое для получения (вычисления) значения одной или более
переменных.
Микрооперация присваивания В=А означает, что переменные
левой части получают значения выражения из правой части.
Всегда разрядность левой части равна разрядности правой час-
ти. При этом биты, расположенные на одной и той же позиции в
левой и правой частях, равны.
Неиспользуемые разряды в левой части и произвольные зна-
чения в правой части микрооперации присваивания обозначаются
(х). Например
(В[7],x,B[6..0]) = (A[7..0],x)
означает арифметический сдвиг влево на один разряд 8-разряд-
ного числа с присваиванием произвольного значения младшему
разряду и с потерей старшего после знака разряда. А, напри-
мер, микрооперация
(B[7..0],d) = (A[7],A[7..0])
означает арифметический сдвиг вправо на один разряд.
Микрооперация
(p,S[3..0]) = A[3..0] + B[3..0] + q
описывает действие, выполняемое стандартным 4-разрядным сум-
матором, если ( А,В,q ) являются его непосредственными входа-
ми, а ( р,S ) — выходами.
Микрооперация ( ) — двоеточие — означает запоминание
(изменение значения) в памяти устройства. Переменная типа па-
мять сохраняет свое значение между двумя очередными присва-
иваниями.
— 8 —
Микрооперации всегда входят в состав микрооператоров.
МИКРООПЕРАТОР — набор взаимосвязанных микроопераций (или
одна микрооперация ), выполняемых одновременно и необходимых
для получения одного или более значений. Например
( e,D ) = R1 + R2 + c
Фрагмент аппаратуры, реализующей этот микрооператор, мог бы
быть, например, таким
┌───┐
c │MUX│
┌┬──┬┐ │ │ ┌───┐
││T │├───>┤0 │ ┌────┐ │MUX│ D
└┴──┴┘ ──>┤1 │ │ SM│ │ │ ┌┬──┬┐
──>┤А ├───>┤cr │ ═══>╡0 ╞═══>╡│RG│╞══>
├───┤ │ S╞═════>╡1 │ └┴──┴┘
R1 │MUX│ │ │ ═══>╡А │
┌┬──┬┐ │ │ │ │ └───┘
││RG│╞═══>╡0 ╞═══>╡I1 │ ┌───┐
└┴──┴┘ ══>╡1 │ │ │ │MUX│
══>╡А │ │ │ │ ├────────────>e
├───┤ │ p├─────>┤0 │
R2 │MUX╞═══>╡I2 │ ───>┤1 │
┌┬──┬┐ │ │ └────┘ ───>┤А │
││RG│╞═══>╡0 │ └───┘
└┴──┴┘ ══>╡1 │
══>╡А │
└───┘
Имена всех переменных, используемых в этом микрооператоре,
означают выполнение микроопераций коммутации ( транспортиров-
ки ). Значения переменных коммутируются на входы суммматора,
а результат суммирования — в места расположения переменных.
МИКРОБЛОК — набор микрооператоров, выполняемых одновре-
менно ( в одном такте ) и синхронно. В одном микроблоке любо-
му из битов присваивается только одно значение.
Синхронность означает, что во всех микрооператорах одно-
го микроблока используется только старое» значение памяти.
Например
{ (p,A) = A + B
(C,r) = A + D }
— и в том, и в другом микрооператоре используется одно и то
же старое значение А.
В то же время в микроблоке
{ (C,x) = A + D
(x,A)= C + B }
в первом микрооператоре используется новое значение А , а во
втором — старое значение С. Разумеется, эти два действия вы-
полняются одновременнo на двух разных сумматорах.
При реализации микроблока { A = B ; B = 0 } обязательна
синхронная реализация В =0 ( хотя обычно такое действие проще
реализовать асинхронно, но это приводит к ошибке ). Другой
правильный вариант можно выполнить В =0 асинхронно, но в
следющем такте.
Всегда предполагается, что предикат вычисляется вместе
(в одном такте) с тем микроблоком, за которым непосредственно
следует его использование.Таким образом, здесь, также как и в
микроблоке, используется старое значение памяти, существовав-
шее перед входом в микроблок. Это связано с особенностями
взаимодействия ОА и УА. Например
— 9 —
█ █
█ CT =(╪0)█ █ CT =(╪0)█
█ █
│ │
┌────V───┐ ┌────V───┐
m1│ CT =3 │ m1│ CT =3 │
└────┬───┘ └────┬───┘
┌──────>│ ┌──────>│
│ ─V─ │ ─V─
│ / =0 │ / =0
│
│ ___/ │ ___/
│ │╪0 │ │╪0
│ ┌────V───┐ │ ┌────V───┐
│m2│……..│ │m2│……..│
│ │ │ │ │ │
│ │CT =CT-1│ │ │CT =CT-1│
│ └────┬───┘ │ └────┬───┘
└───────┘ │ ┌────V───┐
│m3│……..│
│ └────┬───┘
└───────┘
В первом случае цикл будет выполнен 4 раза; во втором — если
в микроблоке m3 нет операций, модифицирующих СТ, — 3 ра-
за. ( Обратите внимание на начальное значение СТ!)
МИКРОКОМАНДА — набор сигналов, поступающий из УА в ОА и
интерпретируемый как управляющий,т.е. необходимый для выпол-
нения всех микроопераций одного микроблока. Сигналы, входящие
в микрокоманду, могут принимать участие в микрооперациях и в
качестве информационных.
Микрокомандой также иногда называют слово управляющей
памяти (обычно ПЗУ), являющееся частью УА. Для различения
этих понятий слово управляющей памяти будем называть МИКРО-
ИНСТРУКЦИЕЙ.
МИКРОПРОГРАММА СОДЕРЖАТЕЛЬНАЯ — алгоритм, представленный
в виде микроблоков и предикатных блоков в одной из принятых
форм, например, в виде блок-схемы или блок-текста.
МИКРОПРОГРАММА КОДИРОВАННАЯ — аппаратная форма содержа-
тельной микропрограммы в виде кодов, заполняющих управляющую
память.
_КАНОНИЧЕСКАЯ СТРУКТУРА ОПЕРАЦИОННОГО АВТОМАТА
В общем случае каноническая структура операционного ав-
томата имеет вид
███████████████████████████████████████████████████████████
█ █
█ ┌──────────┐ ┌┬──────┬┐ ┌──────────┐ ┌───────┐ █
██>╡коммутация│ ││память││ │коммутация│ │функции▐███
│ ▐███>╡│ │▐██>╡ ▐██>╡ │
██>╡ │ ││ ││ │ │ │ ▐███>
└─A────────┘ ─/─┴┴───A──┴┘ └──A───────┘ └──A────┘
█ ┌─┐│CC █ █ █
█ SYN─>┤&├┘ █ █ █
█ ┌┤ │ █ █ █
█ yC│└─┘ █ █ █
└────────────────────────────────────────────────┘
сигналы управления
Столь четкого разграничения операций на зоны (память, комму-
тация, функции) может и не быть. Например, такие широко ис-
пользуемые функции как сдвиги либо хорошо совмещаются с
коммутацией, либо интегрируются с регистрами хранения.Также
часто интегрируются с хранением функции инкремента и
— 10 —
декремента (счетчики обычные и реверсивные).
Особо выделим сигнал yС, управляющий доступом синхросиг-
налов в ОА. Такой вариант управления, называемый условной
синхронизацией, позволяет запретить любые изменения памяти ОА
в каком-либо такте. Причем, если рабочим является срез (зад-
ний фронт) сигнала синхронизации, то используется элемент И,
как и показано на рисунке.Если же рабочим является фронт (пе-
редний фронт) сигнала, то используется элемент ИЛИ. (Первый
перепад сигнала синхронизации в новом такте не должен быть
рабочим.)
_ОПТИМИЗАЦИЯ ОПЕРАЦИОННОГО АВТОМАТА
При проектировании вычислительного устройства основными
являются ограничения на
1)- время вычисления;
2)- объем аппаратуры, реализующей вычисления;
3)- тип применяемых базовых функций.
ОПТИМИЗАЦИЯ АПППАРАТУРЫ ПРИ СОХРАНЕНИИ МИНИМАЛЬНОГО ВРЕМЕНИ
Алгоритм функционального типа обладает максимальным по-
тенциальным параллелизмом (в рамках данной алгоритмической
идеи), и,следовательно, его реализация в виде КС обладает
максимальным быстродействием по сравнению с любыми другими
вычислителями. Невозможность реализации вычислителя в виде КС
может быть обусловлена следующими причинами
— слишком велик объем аппаратуры КС;
— функциональное представление и его реализация являются
статическим отображением входных объектов на выходные это
исключает возможность работы с объектами, которые «ведут се-
бя» более сложно во времени; невозможно также реализовать
принципиально рекуррентные алгоритмы (см.,например,алгоритм
Евклида для нахождения НОД).
Тем не менее, если формально алгоритм функционального
типа может быть записан, то проектирование устройства надо
начинать с записи именно такого алгоритма.
Минимизация аппаратуры «сложной» КС с переходом на про-
цедурный вариант реализации связан с «экономией» числа опера-
ционных элементов, т.е. со слиянием некоторых из них в один
функциональный модуль, выполняющий эти операции по очереди.
Такое решение потребует запоминания всех переменных (входных
и выходных),связанных с выполнением этих операций. Требуется
также управление памятью, связанной с этим функциональным мо-
дулем, а также — может быть — управление самим функциональным
модулем, если он объединил существенно различные функции.
Переход к процедурной реализации и, следовательно, к
дискретизации времени неизбежно увеличит время вычисления од-
ного результата — даже при реализации структуры подобной КС.
При этом, как ни странно, может уменьшиться время следующих
друг за другом вычислений именно за счет дискретизации време-
ни и применения так называемых «конвейерных» вычислений — но
об этом речь пойдет в другом курсе.
Рассмотрим возможность сокращения аппаратуры без увели-
чения времени решения, достигнутого в алгоритме функциональ-
ного типа. Сопоставим схеме устройства, реализующего алгоритм
функционального типа, простую модель в виде направленного
графа. Вершины графа будут соответствовать операциям, а дуги
— переменным алгоритма. Назовем такой граф сигнальным (графом
потоков данных). Заметим, что сигнальный граф всегда будет
ациклическим.
Минимальность времени вычислений сохранится, если совме-
щать в один функциональный модуль операции, которые располо-
жены на одном и том же пути в сигнальном графе, либо на аль-
тернативных путях решения.
— 11 —
_МИНИМИЗАЦИЯ АППАРАТУРЫ
Может оказаться, что на одном пути в сигнальном графе
расположены операции, плохо или вовсе не совмещаемые друг с
другом (т.е. совмещение не дает экономии в аппаратуре функци-
онального модуля). Возможно также, что проведенная минимиза-
ция, сохраняющая минимальное время, не позволяет выполнить
ограничение на объем аппаратуры. В таком случае необходима
более глубокая минимизация,охватывающая параллельные ветви
сигнального графа. Минимизация должна быть взаимосвязанной по
всем компонентам ОА по памяти, функциональным модулям и ком-
мутации.
В настоящее время процедуры минимизации не формализованы
и сводятся к перебору «правдоподобных» вариантов.
Можно предложить следующую последовательность действий
1)- все «похожие» функции (операции) реализовать на одном
функциональном модуле, например, все суммирования выполнять
на одном сумматоре;
2)-скорректировать алгоритм так, чтобы в одном микроблоке не
выполнялось более одной операции на одном и том же функци-
ональном модуле;
3)- минимизировать память автомата, т.е. число запоминаемых
промежуточных переменных;
Выполнение этих этапов может привести к усложнению ком-
мутации, а значит, и к увеличению этой компоненты в аппарату-
ре ОА. Если ограничение по объему аппаратуры все еще наруше-
но, то повторить этапы 1 — 3 с другим вариантом объединения
функциональных модулей и памяти.
При реализации ОА — во избежание ошибок -необходимо бук-
вально следовать описанию алгоритма, но в то же время, при
проектировании самого алгоритма надо представлять себе реали-
зацию микроблоков. Реализация одних и тех же вычислений может
быть существенно различной по объему аппаратуры.
Например, вычисления в цикле потребуют реализации
─┬─
│
┌───────V───────┐ A ┌────┐
│ J =0 │ ┌┬──┬─┐ │ MUX│ ┌────┐
└───────┬───────┘ ││RG│0├───>┤0 │ │ f │
┌──────┐ │ ││ │.│ . │. │A[J] │ │
│ ┌────V──V───────┐ ││ │.│ . │. ├────>┤ │
│ │ ….. │ ││ │.│ . │. │ │ │ B
│ │ │ ││ │ │ │ │ │ ╞══>
│ │ B= f(…,A[J])│ ││ │K├───>┤K │ │ │
│ │ │ ││ │.│ │. │ ══>╡ │
│ │ J =J+1 │ ││ │.│ │. │ │ │
│ └───────┬───────┘ ││ │.│ │. │ │ │
│ ─V─ └┴──┴─┘ ├─ │ └────┘
│
└──────
__/
(реализация счетчика J не показанa).
— 12 —
Запишем этот фрагмент алгоритма иначе так, чтобы нужный
бит извлекался за счет сдвига в регистре D. Тогда получим
───┬── A D
│ ┌┬──┬┐ ┌┬──┬─┐ A[J] ┌─────┐
┌───────V───────┐ ││RG││ ││RG│0├─────>┤ f │
│ J =0 │ ││ ││ ││ │.│ │ │
│ │ ││ ││ ││->│.│ │ │ B
│ D =A │ ││ │╞══════>╡│ │.│ │ ╞══>
└───────┬───────┘ ││ ││ ││ │ │ │ │
┌──────┐ │ ││ ││ ││ │K├ │ │
│ ┌────V──V───────┐ ││ ││ x ──>┤Dn │.│ │ │
│ │ ….. │ ││ ││ ││ │.│ ══>╡ │
│ │ │ ││ ││ S W││ │.│ │ │
│ │ B= f(…,D[0])│ └┴──┴┘ ─v─v┴┴──┴─┘ └─────┘
│ │ │
│ │ (D,x) =(x,D) │
│ │ │
│ │ J =J+1 │
│ └───────┬───────┘
│ ─V─
│
__/
Промежуточный регистр A введен для общности, если потребуется
сохранить слово А (чаще всего он и не нужен).
Другой пример фрагмент алгоритма, реализующий регуляр-
ную запись отдельных бит слова и его реализация имеют вид
───┬── ┌┬─┬┐B[0]
│ a ────────────┬─────>┤│T│├────>
┌───────V───────┐ │ W││ ││
│ J =0 │ ┌───┐ │ ─A┴┴─┴┘
└───────┬───────┘ │DC │ ┌──┼─────┘| |
┌──────┐ │ │ 0├─┘ │ | |
│ ┌────V──V───────┐ │ .│. │ ┌┬─┬┐B[K]
│ │ ….. │ │ .│. └─────>┤│T│├────>
│ │ │ │ .│. W││ ││
│ │ a=f(…) │ J ══>╡ │ ─A┴┴─┴┘
│ │ │ │ K├──────────┘
│ │ B[J] =a │ │ .│
│ │ │ │ .│
│ │ J =J+1 │ │ .│
│ └───────┬───────┘ └───┘
│ ─V─
│
__/
Слово В нельзя реализовать в виде регистра, а только в виде
отдельных триггеров.
Можно формировать слово с использованием операции сдви-
га при обязательном условии D[K..0], тогда алгоритм и его ре-
ализация имеют вид
— 13 —
───┬──
│ D B
┌───────V───────┐ ┌──┬──┬┐ ┌┬──┬┐
│ J =0 │ │ │RG││ ││RG││
└───────┬───────┘ │ │->││ ││ ││
┌──────┐ │ a │ │ │╞═════>╡│ ││
│ ┌────V──V───────┐ ──>┤Dk│ ││ ││ ││
│ │ ….. │ S│ │ ││ W││ ││
│ │ │ ─v┴──┴──┴┘ ─v┴┴──┴┘
│ │ a=f(…) │
│ │ │
│ │ (D,x) =(a,D) │
│ │ │
│ │ J =J+1 │
│ └───────┬───────┘
│ ─V─
│
__/ └────┘
В этом случае, так же, как и в предыдущем, чаще всего не ну-
жен промежуточный регистр (В).
_УНИВЕРСАЛЬНЫЙ ОА
Использование при проектировании универсальных ОА с за-
ранее фиксированной и минимизированной структурой оправдано
тем, что такие универсальные ОА изготавливаются промышлен-
ностью в виде БИС большим тиражом и поэтому они сравнительно
дешевы. Такие универсальные ОА входят в микропроцессорные на-
боры 582, 583, 584, 588, 589, 1800, 1804 и т.д., которые на-
зываются микропрограммируемыми, секционными, разрядно-модуль-
ными.
В основе перечисленных универсальных ОА лежит следующая
структура
╔══════════════════╦═══════════════════════════╗
║ ║ ║
║ ║ SYN┐ ACC ║
║ ┌─┬─────┬┐ ║ ─/┬┬──┬┐ ┌─────┐ ║
║ │ │ RGF ││ ║ C││RG││ │ ALU │ ║
║ │ │ ││ ║ ││ ││ │ │ ║
║ │ │ ││ ╚════>╡│ │╞═════>╡ │ ║
║ │ │ ││ ││ ││ │ ╞═══╩═>DO
╚═══>╡D│ ││ └┴──┴┘ │ │
│ │ ││ T │ │
│ │ ││ ┌┬──┬┐ │ ╞═════>P
│ │ ││ ││RG││ │ │
│ │ │╞═════════>╡│ │╞═════>╡ │
│ │ ││ ││ ││ │ │
C W│А│ ││ C││ ││ ╔═>╡ │
─o─A┴A┴─────┴┘ ─┬┴┴──┴┘ ║ └──A──┘
SYN┘ │ ║ SYN┘ ║ ║
│ ║ ║ ║
yW YA DI═════╝ YF
ALU — арифметико-логическое устройство — комбинационная
схема с небольшим, но универсальным набором арифметических и
логических операций.
RGF — регистровый файл — адресуемая память RAM со стати-
ческой синхронизацией при записи.
RG’T’ — регистр-фиксатор со статической синхронизацией.
RG’АCC’ — регистр-аккумулятор с динамической синхрониза-
цией.
DI,DO — входная и выходная информационные шины.
— 14 —
Р — предикатные сигналы (флажки).
YF — сигналы управления выбором функции.
YA — адрес чтения и/или записи RGF.
yW — разрешение записи в RGF.
Память сравнительно большого объема, какой является RGF,
дешевле реализовать со статической синхронизацией. Для то-
го,чтобы такая память могла работать в замкнутом информацион-
ном кольце и при этом не возникали бы гонки, добавляется еше
один промежуточный регистр RG’T’ со статической синхрониза-
цией. Если передний фронт является рабочим для регистров уп-
равляющего автомата и RG’ACC’, то на первой фазе синхрониза-
ции при SYN=1 информация читается из RGF; при этом RG’T’
прозрачен. На следующей фазе синхронизации при SYN=0 информа-
ция фиксируется в RG’T’, т.е. он закрыт для записи, а запись
(если она разрешена) производится в RGF. Фиксируется информа-
ция в RGF и RG’ACC’ с началом следующего такта, т.е. на пе-
реднем фронте сигнала.
_ВЗАИМОДЕЙСТВИЕ ОА и УА
Для исключения гонок при взаимодействии ОА и УА будем
проектировать УА как автомат Мура. Схема их взаимодействия
может быть представлена в виде
╔══════════════════════════╗
║┌────┐ ┌┬──┬┐ ┌────┐ ║
╚╡ CS │ ││RG││ │CS ╞<╝
│ ╞<═╦═╡│ │╞<══╡ │
┌───┤ b │ ║ ││ ││ │ c ├<────┐
│ └────┘ ║ └┴──┴┴A─ └────┘ │
│ ┌────┐ ║ └───────────┐ │
│ │CS ╞<═╝ │ │
│┌──┤ a ├<───────────────────┐ │ │
ОА ││ └────┘ │ │ │
—-││—————————-│-│-│—
УА ││РА┌────┐ ┌┬──┬┐ ┌─────┐│ │ │┐
│└─>┤ CS│ ││RG││ │ CS ├┘ │ ││
└──>┤ ╞════>╡│ │╞═>╡ ├──┘ ││Y
РВ │ │ ││ ││ │ ├────┘│
╔>╡ p │ ││ ││ │ y ╞═╗ ┘
║ └────┘ └┴──┴┘ └─────┘ ║
╚════════════════════════════╝
Отметим, что РА(t)=f(Y(t)) зависит без сдвига от сигналов
управления,
PB(t+1)=F(Y(t)) зависит со сдвигом от сигналов
управления,
где РА и РВ — предикатные перемнные.
Продолжительность такта работы схемы определяется наибо-
лее длинными цепями между регистрами. Для данной схемы, кото-
рую будем называть последовательной схемой взаимодействия,
зададимся (так чаще всего бывает), что такой критической
цепью является цепь (CSy,CSa,CSp,RG). Поэтому длительность
такта определяется
Т > ty + ta + tp + trg,
где tj- время установления соответствующего компонента цепи.
Чтобы сократить длину этой цепи, применяют другой вари-
ант взаимодействия автоматов — конвейерный
— 15 —
╔══════════════════════════╗
║┌────┐ ┌┬──┬┐ ┌────┐ ║
╚╡ CS │ ││RG││ │CS ╞<╝
│ ╞<═╦═╡│ │╞<══╡ │
┌───────────┤ b │ ║ ││ ││ │ c ├<────┐
│ FF └────┘ ║ └┴──┴┴A─ └────┘ │
│ ┌┬──┬┐ ┌────┐ ║ └───────────┐ │
│┌─┤│RG│╞<══╡ CS ╞<═╝ │ │
││ ││ ││ │ a ├<───────────────────┐ │ │
││ └┴──┴┴A─ └────┘ │ │ │
ОА ││ └──────────────────────────┐ │ │ │
—││———————————-│-│-│-│—
УА ││ MK │ │ │ │
││ PA ┌────┬────┐ ┌┬──┬┐│ │ │ │┐
│└────>┤ CS│ CS │ ││RG│├┘ │ │ ││
│ РВ │ │ │ ││ │├──┘ │ ││Y
└─────>┤ │ ╞═══════════>╡│ │├────┘ ││
│ │ │ ││ │├──────┘│
╔>╡ p │ y │ ││ │╞═╗ ┘
║ └────┴────┘ └┴──┴┘ ║
╚═══════════════════════════════╝
При этом варианте взаимодействия такой длинной цепи, как
в предыдущем случае, не возникает.Эта цепь разделена регис-
трами RG’FF’ (регистр флажков) и RG’MK’ (регистр микрокоман-
ды) на две цепи. Продолжительность такта становится меньше и
ее можно определить следующим образом
T > max( ta,(tp + ty) )+ trg ,
При конвейерном варианте взаимодействия
PA(t+1)=f(Y(t)), т.е. и эти значения стали зависить со
сдвигом от сигналов управления. Тогда фрагмент микропрограммы
mS{…;pA=f(…)}
<< GO(pA;mi,mj)>>,
выполняемый в последовательной схеме за один такт, в кон-
вейерном варианте за один такт выполнен быть не может и дол-
жен быть модифицирован следующим образом
mS{…,pA=f(…)}
mS'{нет операции}
<< GO(pA;mi,mj)>>
Таким образом, время выполнения этого фрагмента не только не
уменьшилось, но даже возросло несмотря на уменьшение продол-
жительности каждого из тактов. Зато во всех остальных случа-
ях (при безусловных переходах, при переходах по значению РВ)
время выполнения микропрограммы уменьшается.
_НАЧАЛЬНАЯ ИНИЦИАЛИЗАЦИЯ СИНХРОННОЙ СХЕМЫ
Пусть устройство, кроме сигнала синхронизации SYN, имеет
еще один сигнал Н, обозначающий начало и конец синхронной ра-
боты устройства. При Н=0 — нерабочее состояние — можно выпол-
нять начальную установку значений памяти устройства. Измене-
ние значения Н с 0 на 1 происходит в случайный момент времени
(асинхронно), но при этом начальный такт работы устройства
должен быть полным. «Затягивание» асинхронного сигнала Н в
синхронный режим происходит с помощью простейшего синхронного
автомата с диаграммой
┌──────────┐ ┌────────┐
V 0H/CONST│ V 1H/SYN│
█▀▀▀█────────┘ █▀▀▀█──────┘
>▌ 0 ▐──────────────>▌ 1 ▐──────┐
█▄▄▄█ 1H/CONST █▄▄▄█ 0H/X │
л │
└────────────────────────────┘
У этого автомата простейшей является функция переходов, так
как диаграмма автомата совпадает с диаграммой переходов
— 16 —
D-триггера.
Схема автомата вместе с цепями условной синхронизации
выглядит следующим образом (для синхронизации по фронтам)
а)-по переднему фронту, б)- по заднему фронту
┌──┐ ┌──┐
SYN ──┬──────────┤ 1├── CC SYN ──┬──────────┤ &├── CC
│ ┌─┬─┐ ┌─┤ │ │ ┌─┬─┐ ┌─┤ │
└─/C│T│ │ └──┘ └─C│T│ │ └──┘
│ │ ├ │ │ │ ├──┘
┌─┤D│ │ │ ┌─┤D│ │
│ ├─┤ o──┘ │ ├─┤ o─
├─oR│ │ ├─oR│ │
H │ └─┴─┘уст. нач. зн. H │ └─┴─┘уст. нач. зн.
──┴─────────────────── ──┴───────────────────
Такая разница в цепях условной синхронизации, как уже объяс-
нялось выше, определяется тем, что первый перепад сигнала СС
не должен быть рабочим.
«