Радиационный режим в атмосфере
Излучение в атмосфере Реферат Радиационный режим в атмосфере Составлен Карбышевым С.Ф. Введение
Большинство происходящих в атмосфере явлений, изучаемых оптиками и метеорологами, развиваются за счет лучистой энергии, т.е. энергии, доставляемой Земле солнечной радиацией. Мощность этой энергии примерно может быть оценена в 18*1023 эрг/с. Энергетический спектр солнечной радиации на границе атмосферы близок к спектру абсолютно черного тела с температурой порядка 60000К (рис.1.[1]).
До того, как солнечное излучение достигнет поверхности, оно проделает длинный путь через
земную атмосферу, где будет не только рассеяно и ослаблено, но и изменено по спектральному
Рис.1. Распределение энергии в спектре солнечной радиации на границе атмосферы 1- по данным 1903-1910 гг., 2 — 1920-1922 гг., 3 — 1917 г., 4 — абсолютно черное тело при температуре 57130К.
составу. В результате дошедшая до места наблюдения (земной поверхности) в виде параллельных лучей от Солнца так называемая прямая солнечная радиация будет как количественно, так и качественно отлична от солнечной радиации за пределами атмосферы [1].
Солнечная (коротковолновая) радиация преобразуется, проходя через атмосферу, в следующие виды радиации рассеянную (ввиду наличия в атмосфере различных ионов и молекул газов, частиц пыли происходит рассеяние прямой солнечной энергии во все стороны; часть рассеянной энергии доходит до поверхности Земли), отраженную (часть попавшей в атмосферу и на земную поверхность энергии отражается обратно), поглощенную (происходит диссоциация и ионизация молекул верхних слоях атмосферы, нагрев воздуха и самой земной поверхности, тех предметов, которые на ней находятся).
Спектр Солнца
Как видно из рис.1., энергетический спектр излучения близок к спектру абсолютно черного тела при температуре T~ 60000К, но не совпадает с ним, т.к. яркость солнечного диска планомерно уменьшается от его центра к краям. Наилучшей формой представления распределения энергии в солнечном спектре является формула В.Г. Кастрова
l0,l *D l =0,021*l -23*exp(-0,0327*l -4)*D l [1] (1).
Формулы, описывающей распределение энергии Солнца на поверхности Земли пока не существует, т.к. в нее должно входить слишком много флуктуирующих параметров (плотность и высотное распределение газов, альбедо отражающих поверхностей, температура и т.п.).
Ослабление потоков лучистой энергии в атмосфере
Солнечное излучение, проходя через атмосферу, ослабляется благодаря эффектам рассеяния и поглощения. Для потоков лучистой энергии атмосфера в видимой части спектра является мутной средой, т.е. рассеивающей, а в ультрафиолетовой и инфракрасной — поглощающей и рассеивающей. Световой поток поглощается в атмосфере, причем количество энергии, дошедшей до поверхности Земли, можно найти из закона Бугера (закон ослабления света)
I=I0*exp(-)[3] (2),
где I0 — интенсивность падающего излучения (на границе атмосферы), Z0£ 750 (плоско-параллельная модель атмосферы), H — путь, пройденный светом до земной поверхности, k(h)- коэффициент поглощения (ослабления) светового потока, зависящий от высотного распределения плотности, состава атмосферы, физических и химических свойств газов, частиц, находящихся в атмосфере (рис.2.[1]).
Рассмотрим избирательное поглощение лучистой энергии в атмосфере. Любое вещество имеет свои полосы поглощения (рис.3.[1]). Из газов, входящих всегда в состав атмосферы, существенным для нас селективным поглощением обладают лишь O2, O3, CO2 и водяной пар H2O. Кислород вызывает интенсивное поглощение света
В далекой ультрафиолетовой области для длин волн l <200 нм, с максимумом поглощения около l =155нм. Поглощение в этой области спектра настолько велико уже в самых высоких слоях
Рис.2. Распределение энергии в нормальном солнечном спектре.
Рис.3. Спектр поглощения земной атмосферы.
атмосферы, что солнечные лучи с длиной волны l <200нм не доходят до высот, доступных для наблюдения с поверхности Земли и самолетов. Кислород также дает систему полос в видимой области спектра A (759,4- 70,3 нм; l max=759,6 нм); B (686,8 - 694,6 нм; l max=686,9 нм). Углекислый газ (CO2) - основная узкая полоса с l max=4,3 мкм, остальные - слишком незначительны, поэтому не имеют для нас существенного значения. Озон (O3) имеет весьма сложный спектр поглощения, линии и полосы которого охватывают всю область солнечного спектра, начиная от крайних ультрафиолетовых лучей и до далекой инфракрасной области[1]. В земной атмосфере озона мало, он располагается в виде слоя (10 - 40 км) с центром тяжести на высоте около 22 км, но обладает сильной поглощательной способностью. Его полосы п.Гартлея (200 - 320 нм; l max=255 нм); п.Шапюи (500 - 650 нм; l max=600 нм). Наибольшее значение в поглощении лучистой энергии в атмосфере имеет водяной пар (H2O), которого очень много в нашей атмосфере (влажность, облака и т.п.), его полосы поглощения r s t (0,926 - 0,978 мкм; l max=0,935 мкм); F (1,095 - 1,165 мкм; l max=1,130 мкм); Y (1,319 - 1,498 мкм; l max=1.395); W (1,762 - 1.977 мкм; l max=1.870 мкм); C (2,520 - 2,845 мкм; l max=2,680 мкм). Наиболее точная формула для расчета величины поглощенной в атмосфере энергии солнечной радиации имеет вид
D E=0,156*(m*v )0,294 кал/см2* мин.[2] (3),
где m — пройденный лучами путь, v — общее содержание водяного пара в вертикальном столбе атмосферы единичного сечения (1 см2). Далее рассмотрим атмосферные аэрозоли и пыль, их содержание зависит от высоты, они влияют на уменьшение прозрачности атмосферы.
Рассмотрим отраженную радиацию, т.е. радиацию, которая достигает земной поверхности, частично отражается от нее и вновь возвращается в атмосферу. Также отраженная радиация — это и излучение, отраженное от облаков.
Количество отраженной некоторой поверхностью энергии в сильной мере зависит от свойств и состояния этой поверхности, длины волны падающих лучей. Можно оценить отражательную способность любой поверхности, зная величину ее альбедо, под которым понимается отношение величины всего потока, отраженного данной поверхностью по всем направлениям, к потоку лучистой энергии, падающему на эту поверхность; обычно его выражают в процентах (ТАБЛИЦА 1[1]).
ТАБЛИЦА 1
ВИД ПОВЕРХНОСТИ
АЛЬБЕДО
СУХОЙ ЧЕРНОЗЕМ
14
ГУМУС
26
ПОВЕРХНОСТЬ ПЕСЧАНОЙ ПУСТЫНИ
28 -38
ПАРОВОЕ ПОЛЕ ( СУХОЕ)
8 — 12
ВЛАЖНОЕ ВСПАХАННОЕ ПОЛЕ
14
СВЕЖААЯ ( ЗЕЛЕНАЯ ) ТРАВА
26
СУХАЯ ТРАВА
19
РОЖЬ И ПШЕНИЕЦА
10 — 25
ХВОЙНЫЙ ЛЕС
10 — 12
ЛИСТВЕННЫЙ ЛЕС
13 — 17
ЛУГ
17 — 21
СНЕГ
60 — 90
ВОДНЫЕ ПОВЕРХНОСТИ
2 — 70
ОБЛАКА
60 — 80
Рассмотрим рассеянную радиацию. Рассеяние в атмосфере может происходить на молекулах газов (молекулярное рассеяние) и частицах (крупных (l <
где Si — параметры Стокса (S1=I — суммарная интенсивность, S2=I*p*cos(Y 0), Y 0 — угол поворота направления максимальной поляризации относительно плоскости референции, p — степень линейной поляризации, S3=I*p*sin(Y 0), S4=I*q, q — степень эллиптичности поляризации),fij — матрица рассеяния. При молекулярном рассеянии диполи под действием падающей волны начинают двигаться с ускорением, следовательно излучают волны с частотой падающей волны, т.е. происходит рассеяние света на данных молекулах. Рассмотрим коэффициент молекулярного ослабления kMS и учтем, что рассеяние должно происходить тогда, когда показатель преломления частицы относительно среды n не равен единице, тогда
[3] (5) (l << r),
где N — число частиц в единице объема, l — длина падающей волны. Также запишем функцию, показывающую “разбрасывание света по углам”
fMS(j )=3*t MS*(1+cos2(j ))/(16*p )[3] (6),
где t MS — оптическая толща молекулярного рассеяния. Если ввести параметр D , характеризующий анизотропию молекул, то формула (6) примет вид
fMS(j )=3*t MS*(1+D +(1-D )*cos2(j ))/(16*p )[3] (7)
Обычно молекулярный рассеянный свет поляризован
[3](8),
где Pлин — степень линейной поляризации.
При попадании света на крупные частицы, обычно находящиеся вблизи поверхности Земли, происходит частичная потеря импульса падающей электро-магнитной волны, т.е. на молекулу действует световое давление, тогда будем иметь эффекты дифракции, отражения и преломления, пронукновения электро-магнитной волны вовнутрь частицы. В результате может возникнуть интерференция падающей волны и вышедшей из частицы за счет явления внутреннего отражения. Все эти явления описываются в теории Ми. Предположения теории Ми частицы сферические, однородные, не сталкиваются; атмосфера — плоско-параллельный слой. Т.к. показатель преломления частиц, описываемых теорией Ми, — комплексный m=n+i *c , где n — обычный показатель преломления, c — характеризует поглощение волны частицей.
В результате рассеяния прямого солнечного излучения в атмосфере, она сама становится источником излучения, которое достигает земной поверхности в виде рассеянного излучения. Максимум в спектре рассеянной радиации смещен в более коротковолновую область, чем у солнечного спектра; также состав рассеянной радиации зависит от высоты Солнца (рис.4.[1]).
Рис.4. Распределение энергии в спектре рассеянного света, посылаемого различными точками небесного свода.
Рассеянная радиация также зависит и от облачности, что проиллюстрировано на рис.5.[1], который построен по экспериментальным данным для г. Павловска. Нередки случаи, когда рассеянная радиация достигает значений, сравнимых с потоком прямой солнечной радиации[1]. Это явление обычно происходит в северных широтах. Оно объяснимо тем, что чистый сплошной снежный покров имеет черезвычайно большую отражательную способность. Облака являются средами, которые могут сильно рассеивать свет; опыты показали, что плотные облака толщиной 50 — 100 метров уже полностью рассеивают прямые солнечные лучи.
Рис.5. Рассеянная радиация атмосферы при безоблачном небе и при сплошной облачности (10 баллов).
Реферат содержит
СТРАНИЦ
ТАБЛИЦ
РИСУНКОВ
ФОРМУЛ
14
1
5
8
Литература
“Курс метеорологии” под ред. Г.Н.Тверского, ГИДРОМЕТЕОИЗДАТ, Л., 1951г..
Справочник “Атмосфера”, ГИДРОМЕТЕОИЗДАТ, Л., 1991г..
Лекции Павлова В.Е. по оптике атмосферы для студентов III — V курсов специализации “Оптическое зондирование атмосферы”, АГУ, Барнаул, 1996г..