Структура сходящихся последовательностей

Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
Определение Последовательность {xn} называется сходящейся, если существует такое число а, что последовательность {xn-а} является бесконечно малой. При этом число а называется пределом последовательности {xn}.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности Последовательность {xn} называется сходящейся, если существует такое число а, что для любого положительного числа e можно указать номер N такой, что при n⊃3;N все элементы xn этой последовательности удовлетворяют неравенству
|xn-a| При этом число а называется пределом последовательности.
Некоторые свойства сходящихся последовательностей
ТЕОРЕМА Сходящаяся последовательность имеет только один предел.
Доказательство Пусть a и b – пределы сходящейся последовательности {xn}. Тогда, используя специальное представление для элементов xn сходящейся последовательности {xn}, получим xn=а+an, xn=b+bn, где an и bn – элементы бесконечно малых последовательностей {an} и {bn}.
Вычитая данные соотношения, найдем an-bn=b-a. Так как все элементы бесконечно малой последовательности {an-bn} имеют одно и то же постоянное значение b-a, то (по теореме Если все элементы бесконечно малой последовательности {an} равны одному и тому же числу с, то с=0) b-a=0, т.е. b=a. Теорема доказана.
ТЕОРЕМА Сходящаяся последовательность ограничена.
Доказательство Пусть {xn} — сходящаяся последовательность и а – ее предел. Представим ее в следующем виде
xn=а+an,
где an- элемент бесконечно малой последовательности. Так как бесконечно малая последовательность {an} ограничена (по теореме Бесконечно малая последовательность ограничена.), то найдется такое число А, что для всех номеров n справедливо неравенство |an|£А. Поэтому | xn | £ |a| + A для всех номеров n, что и означает ограниченность последовательности {xn}. Теорема доказана.
Ограниченная последовательность может и не быть сходящейся. Например, последовательность 1, -1, 1, -1, … — ограничена , но не является сходящейся. В самом деле, если бы эта последовательность сходилась к некоторому числу а, то каждая из последовательностей {xn-a} и {xn+1-a} являлась бы бесконечно малой. Но тогда (по теореме Разность бесконечно малых последовательностей есть бесконечно малая последовательность.) {(xn-a) – (xn+1-a)}={xn– xn+1} была бы бесконечно малой, что невозможно т.к. |xn– xn+1| = 2 для любого номера n.
ТЕОРЕМА Сумма сходящихся последовательностей {хn} и {yn} есть сходящаяся последовательность, предел которой равен сумме пределов последовательностей {хn} и {yn}.
Доказательство Пусть а и b – соответственно пределы последовательностей {хn} и {yn}. Тогда
xn=а+an, yn=b+bn,
где {an} и {bn) – бесконечно малые последовательности. Следовательно, (хn + yn) — (а + b) =an+bn.
Таким образом, последовательность {(хn + yn) — (а + b)} бесконечно малая, и поэтому последователдьность {хn + yn} сходится и имеет своим пределом число а+b. Теорема доказана.
ТЕОРЕМА Разность сходящихся последовательностей {хn} и {yn} есть сходящаяся последовательность, предел которой равен разности пределов последовательностей {хn} и {yn}.
Доказательство Пусть а и b – соответственно пределы последовательностей {хn} и {yn}.Тогда
xn=а+an, yn=b+bn,
где {an} и {bn) – бесконечно малые последовательности. Следовательно, (хn — yn) — (а — b) =an-bn.
Таким образом, последовательность {(хn — yn) — (а — b)} бесконечно малая, и поэтому последователдьность {хn — yn} сходится и имеет своим пределом число а-b. Теорема доказана.
ТЕОРЕМА Произведение сходящихся последовательностей {хn} и {yn} есть сходящаяся последовательность, предел которой равен произведению пределов последовательностей {хn} и {yn}.
Доказательство Пусть а и b – соответственно пределы последовательностей {хn} и {yn}, то xn=а+an, yn=b+bn и xn×yn=a×b+a×bn+b×an+an×bn. Следовательно,
xn×yn-а×b=a×bn+b×an+an×bn.
(в силу теоремы Произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность.) последовательность {a×bn+b×an+an×bn} бесконечно малая, и поэтому последовательность {xn×yn-а×b} тоже бесконечно малая, а значит последовательность {xn×yn} сходится и имеет своим пределом число а×b. Теорема доказана.
ЛЕММА Если последовательность {yn} сходится и имеет отличный от ноля предел b, то, начиная с некоторого номера, определена последовательность , которая является ограниченной.
Доказательство Пусть . Так как b⊃1;0, то e>0. Пусть N – номер, соответствующий этому e, начиная с которого выполняется неравенство
|yn-b| из этого неравенства следует, что при n⊃3;N выполняется неравенство |yn|>. Поэтому при n⊃3;N имеем . Следовательно, начиная с этого номера N, мы можем рассматривать последовательность , и эта последовательность ограничена. Лемма доказана.
ТЕОРЕМА Частное двух сходящихся последовательностей {xn} и {yn} при условии, что предел {yn} отличен от ноля, есть сходящаяся последовательность, предел которой равен частному пределов последовательностей {xn} и {yn}.
Доказательство Из доказанной ранее леммы следует, что, начиная с некоторого номера N, элементы последовательности {yn} отличны от ноля и последовательность ограничена. Начиная с этого номера, мы и будем рассматривать последовательность . Пусть а и b – пределы последовательностей {xn} и {yn}. Докажем, что последовательность бесконечно малая. В самом деле, так как xn=а+an, yn=b+bn, то
. Так как последовательность ограничена, а последовательность бесконечно мала, то последовательность бесконечно малая. Теорема доказана.
Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
ТЕОРЕМА Если элементы сходящейся последовательности {xn}, начиная с некоторого номера, удовлетворяют неравентству xn⊃3;b (xn£b), то и предел а этой последовательности удовлетворяет неравенству а⊃3;b (a£b).
Доказательство Пусть все элементы xn, по крайней мере начиная с некоторого номера, удовлетворяют неравенству xn⊃3;b. Предположим, что а |xn-a| Это неравенство эквивалентно
-(b-a) Используя правое из этих неравенств мы получим xn Элементы сходящейся последовательности {xn} могут удовлетворять строгому неравенству xn>b, однако при этом предел а может оказаться равным b. Например, если xn=1/n, то xn>0, однако .
Следствие 1 Если элементы xn и уn у сходящихся последовательностей {xn} и {yn}, начиная с некоторого номера, удовлетворяют неравенству xn £ уn, то их пределы удовлетворяют аналогичному неравенству
.
Элементы последовательности {yn-xn} неотрицательны, а поэтому неотрицателен и ее предел . Отсюда следует, что
.
Следствие 2 Если все элементы сходящейся последовательности {xn} находятся на сегменте [a,b], то и ее предел с также находится на этом сегменте.
Это выполняется, так как а£xn£b, то a£c£b.
ТЕОРЕМА Пусть {xn} и {zn}- сходящиеся последовательности, имеющие общий предел а. Пусть, кроме того, начиная с некоторого номера, элементы последовательности {yn}удовлетворяют неравенствам xn£yn£zn. Тогда последовательность {yn} сходится и имеет предел а.
Доказательство достаточно доказать, что {yn-a} является бесконечно малой. Обозначим через N’ номер, начиная с которого, выполняются неравенства, указанные в условии теоремы. Тогда, начиная с этого же номера, будут выполнятся также неравенства xn-а £ yn-а £ zn-а. Отсюда следует, что при n⊃3;N’ элементы последовательности {yn-a} удовлетворяют неравенству
|yn-a| £ max {|xn-a|, |zn-a|}.
Так как и , то для любого e>0 можно указать номера N1 и N2 такие, что при n⊃3;N1 |xn-a| ПРИМЕРЫ
1. Последовательность сходится и имеет своим пределом ноль. Ведь каково бы ни было e>0, по свойству Архимеда вещественных чисел существует такое натуральное число ne, что ne>. Поэтому для всех n⊃3;ne, а это означает, что .
2. Последовательность сходится и , что следует из того, что
, и того, что .
ЗАДАЧИ
ЗАДАЧА № 1
Пусть числовая последовательность а1, а2, а3, … удовлетворяет условию
(m, n = 1, 2, 3, … ),
тогда последовательность
,…
должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани.
РЕШЕНИЕ
Видим частный случай теоремы у M. Fekete. Достаточно рассмотреть случай, когда нижняя грань a конечна. Пусть e>0 и a+e. Всякое целое число n может быть представлено в форме n=qm+r, где r=0 или 1, или 2, …, или m-1. Полагая единообразие а0=0, имеем
an=aqm+r£am+am+…+am+ar=qam+ar,
,

ЗАДАЧА № 2
Пусть числовая последовательность а1, а2, а3, … удовлетворяет условию

тогда существует конечный предел
,
причем
(n = 1, 2, 3, … ).
РЕШЕНИЕ
Из неравенств 2am-1 (*)
Ряд

сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом
|a1|+2-1+2-2+2-3+…
запишем целое число n по двоичной системе
n=2m+e12m-1+e22m-2+…+em (e1, e2, …, em = 0 или 1)
согласно предположению

.
Применяя теорему (1) для данных

s0=0, s1=, sm-1=, sm=, …, pn0=0, pn1=, …, pn, m-1=,
, pn, m+1=0, …,
заключаем, что . Наконец, в силу (*) имеем
.
ЗАДАЧА № 3
Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup.
РЕШЕНИЕ
Нам достаточно рассмотреть случай, когда частичные суммы s1, s2, …, sn, … ограничены. Пусть , , l — целое положительное число, l>2 и .
Разобьем числовую прямую на l интервалов точками
-¥, m+d, m+2d, …, M-2d, M-d, +¥.
Выберем такое N, чтобы для n>N выполнялось неравенство |sn-sn+1|N) лежит в первом интервале и sn2 (n2> n1) – в последнем. Тогда числа конечной последовательности не смогут “перепрыгнуть” ни один из l-2 промежуточных интервалов длиной d. Аналогично рассуждаем и в том случае, когда последовательность будет не «медленно восходящей», а «медленно нисхожящей».
ЗАДАЧА № 4
Пусть для последовательности t1, t2, … , tn, … существует такая последовательность стремящихся к нулю положительных чисел …, что для каждого n
. Тогда числа t1, t2, … , tn, …лежат всюду плотно между их нижним и верхним пределами.
РЕШЕНИЕ
Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу.
ЗАДАЧА № 5
Пусть v1, v2, … , vn, … — положительные числа, v1 £ v2 £ v3 … Совокупность предельных точек последовательности
, …
заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу).
РЕШЕНИЕ

ЗАДАЧА № 6
Числовая последовательность, стремящаяся к , имеет наименьший член.
РЕШЕНИЕ
Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших.
ЗАДАЧА № 7
Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой.
РЕШЕНИЕ
При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности.
ЗАДАЧА № 8
Пусть l1, l2, l3, … , lm, … — последовательность положительных чисел и , тогда существует бесконечно много номеров n, для которых ln меньше всех предшествующих ему членов последовательности l1, l2, l3, … , ln-1.
РЕШЕНИЕ
Пусть задано целое положительное число m и h – наименьшее из чисел l1, l2, l3, … , lm; h>0. Согласно предположению в рассматриваемой последовательности существуют члены, меньше чем h. Пусть n – наименьший номер, для которого lnm; ln ЗАДАЧА № 9
Пусть l1, l2, l3, … , lm, … — последовательность положительных чисел и , тогда существует бесконечно много номеров n, для которых ln превосходит все следующие за ним члены ln+1, ln+2, ln+3,…
ЗАДАЧА № 10
Пусть числовые последовательности
l1, l2, l3, … , lm, … (lm>0),
s1, s 2, s 3, … , s m, … (s1>0, sm+1>sm, m=1, 2, 3, …)
обладают тем свойством, что
, .
Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства
ln>ln+1, ln>ln+2, ln>ln+3, …
lnsn>ln-1sn-1, lnsn>ln-2sn-2, … lnsn>l1s1,
РЕШЕНИЕ
Будем называть lm «выступающим» членом последовательности, если lm больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут
,…
Каждый невыступающий член lv заключается (для v>n1) между двумя последовательными выступающими членами, скажем nr-1 ,
значит
(*)
отсюда заключаем, что

Действительно, в противном случае , значит, в силу (*) и вся последовательность l1s1, l2s2, … были бы ограничены, что противоречит предположению. Теперь пусть задано целое положительное число m и h – наименьшее из чисел ,… ; h>0. Согласно предположению в рассматриваемой последовательности существуют члены, меньше чем h. Пусть k – наименьший номер, для которого m; .
ЗАДАЧА № 11
Если числовая последовательность ,… стремится к и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), n⊃3;1, что n отношений
все не больше А, а бесконечное множество отношений
,… все не меньше А.
РЕШЕНИЕ
Имеем . Пусть минимум последовательности
L0-0, L1-A, L2-2A, L3-3A, …
Будет Ln-nA; тогда
Ln-u-(n-u)A⊃3; Ln-nA; Ln+v-(n+v)A⊃3; Ln-nA,
u=1, 2, …, n; v=1, 2, 3, …; n=0 исключено в силу предложений относительно А.
ЗАДАЧА № 12
Пусть относительно числовой последовательности l1, l2, l3, … , lm, … предполагается лишь, что
. Пусть, далее, А>l1. Тогда существует такой номер n, n ⊃3; 1, что одновременно выполняются все неравенства

. Если А®¥, то также n®¥.
РЕШЕНИЕ

Пусть
l1+l2+l3+…+lm=Lm, m=1, 2, 3, …; L0=0.
Так как L1-A<0, то L0-0 не является минимумом в предыдущем решении. ln+1⊃3;A; поэтому ln+1, а следовательно и n должны стремиться к бесконечности одновременно с А.
ЗАДАЧА № 13
Пусть числовая последовательность l1, l2, l3, … , lm, … удовлетворяет условиям
,
Пусть, далее, l1>A>0. Тогда существует такой номер n, n ⊃3; 1, что одновременно выполняются все неравенства

. Если А®0, то также n®0.
РЕШЕНИЕ
Положим
l1+l2+l3+…+lm=Lm, m=1, 2, 3, …; L0=0.
Тогда . Последовательность
L0-0, L1-A, L2-2A, L3-3A, …, Lm-mA, …
стремится к -¥. Пусть ее наибольший член будет Ln-nA. Тогда интересующие нас неравенства будут выполняться для этого номера n.
В последовательности L0, L1, …, Lm, … содержится бесконечно много членов, превышающих все предыдущие. Пусть Ls будет один из них. Тогда числа

все положительны коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, Ln) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном.