Этиленгликоль
Этиленгликоль
Этиленгликоль
Министерство Образования и Науки РФ
Казанский Государственный Технологический Университет
Кафедра ТООНС
Контрольная работа по курсу
«Основы технологии органического синтеза»
на тему
Этиленгликоль
Казань
2007
Содержание
Введение
Физические свойства
Химические свойства
Способы получения этиленгликол
Технологическая схема получения этиленгликоля гидратацией окиси этилена
Технологическая схема совместного получения этиленгликоля и окиси этилена в стационарном слое катализатора
Применение этиленгликоля
Список литературы
Введение
Этиленгликоль — простейший двухатомный спирт ряда гликолей, впервые синтезированный Вюрцем в 1859 г. В промышленных масштабах эти-ленгликоль начали получать в Германии в период первой мировой войны. В настоящее время этиленгликоль (а также диэтиленгликоль и полиэтиленгликоли) вырабатывают в очень больших количествах и используют в различных отраслях народного хозяйства.
Будучи весьма гигроскопичным, этиленгликоль в то же время хорошо растворяет смолы, красители и некоторые вещества растительного происхождения. Благодаря сочетанию этих свойств этиленгликоль применяется при крашении тканей, в ситцепечатании, для приготовления штемпельных красок и косметических препаратов, для увлажнения табака и т. д. Этиленгликоль является также важным полупродуктом в производстве синтетических смол, растворителей, взрывчатых веществ и пр.
Состав этиленгликоля С2Н6О2.
Структурная формула
Н Н
׀ ׀
Н – С – С — Н
׀ ׀
ОН НО
Физические свойства
Этиленгликоль СН2ОН—СН2ОН — вязкая бесцветная жидкость со слабым запахом и сладким вкусом. Температура кипения 197° С. Температуры кипения гликолей значительно выше температуры кипения спиртов, что является следствием усиления ассоциации молекул (образования водородных связей) из-за наличия в гликолях двух гидроксильных групп. Температура плавления —11,5° С. Плотность 1,11г/см3; теплота парообразования 191 ккал/кг. Смешивается во всех отношениях с водой, глицерином, одноатомными алифатическими спиртами, ацетоном, ледяной уксусной кислотой, пиридином и фурфуролом; не смешивается с бензолом, ксилолом, толуолом, хлорбензолом, хлороформом, четыреххлористым углеродом. Этиленгликоль обладает токсическим действием, сходным с действием метилового спирта.
Этиленгликоль сравнительно устойчив при высокой температуре — не разлагается при пропускании над пемзой, нагретой до 400°С. Разложение гликоля начинается при 500 — 520°С, а при 550°С происходит уже со значительной скоростью; но даже при этой температуре до 36% этиленгликоля не подвергается разложению.
Важным свойством этиленгликоля является его способность сильно понижать температуру замерзания воды. Водный раствор, содержащий 40 объемных % этиленгликоля, замерзает при —25°С, а 60%-ный водный раствор при — 40°С. Поэтому этиленгликоль с успехом применяется для приготовления антифризов.
Химические свойства
Химические свойства этиленгликоля, как и других гликолей аналогичны свойствам одноатомных спиртов. Однако у гликолей могут вступать в реакции как одна, так и обе гидроксильные группы.
1. С щелочными металлами гликоли образуют полный и неполный гликоляты CH2ONa — CH2ONa, CH2OH — CH2ONa.
Гликоляты образуются не только со щелочными металлами, но и с оксидами некоторых других металлов, например с гидроксидом меди. При действии щелочи на сульфат меди (II) образуется голубой осадок гидроксида меди (II). Этот осадок не растворяется в спирте, но очень легко на холоде растворяется в гликоле вследствие образования комплексного гликолята меди
Н
׀
СН2ОН СН2 — О О – СН2
2 ׀ + Cu (OH)2→׀ Cu ׀ + 2 H2O
СН2ОН СН2 — О О – СН2
׀
Н
2. С минеральными и органическими кислотами получаются полные и неполные эфиры. Например, в приведенной реакции образуются неполный и полный эфиры этиленгликоля и азотной кислоты — нитраты
СН2ONO2
СН2ОН +НОNO2 Н2О + ׀
_ СН2OH
+2HONO2 СН2ONO2
СН2ОН 2Н2О + ׀
СН2ONO2
Соответственно можно получить полные и неполные простые эфиры, например диэтиловый эфир этилен гликоля C2Н5ОСН2 – СН2ОС2Н5 и моноэтиловый эфир СН2ОН — СН2ОС2Н5 . Последний под названием этилцеллозольв применяется как растворитель в производстве нитролаков, бездымного пороха (пироксилина), ацетатного шелка и других производных целлюлозы.
С двуосновными кислотами этиленгликоль ступает реакцию поликонденсации, образуя высокомолекулярные полиэфиры
HO – C = O O O
Н2С – ОН ׀ ׀׀ ׀׀
n ׀ + n R → – OCH2 – CH2 – O – C – R – C – + 2nH2O
Н2С – ОН ׀
HO – C = O n
3. Окисление гликолей проходит сложно, ступенчато
О
׀׀
О СН2OH – СООН → НООС – С — Н
СН2ОН ׀׀ ↓
׀ → С О О СООН
СН2ОН ׀ Н ׀׀ ׀׀ ׀
СН2OH С — С СООН
׀ ׀
ֽ ֽ
4. Отщепление воды от этиленгликоля может иметь внутримолекулярный и межмолекулярный характер. Направление отщепления воды зависит от условий реакции. Пример внутримолекулярного выделения воды
СН2ОН — СН2ОН → [СН2 = СНОН] → СН3 – СНО
Межмолекулярное выделение воды приводит к образованию оксиэфиров (спиртоэфиров) или циклических простых эфиров
СН2 – СН2
СН2ОН НО – СН2 СН2 – О – СН2 ׀ ׀
׀ + ׀ → ׀ ׀ → О О
СН2ОН СН2ОН СН2ОН СН2ОН ׀ ׀
СН2 – СН2
При межмолекулярной дегидратации этиленгликоля могут быть получены зависимости от условий диэтиленгликоль или диоксан
СН2 – СН2
׀ ׀
2НОСН2 – СН2ОН → НОСН2 – СН2–О-СН2 – СН2ОН → О О
׀ ׀
СН2 – СН2
Способы получения этиленгликоля
В промышленном масштабе этиленгликоль получают главным образом гидратацией окиси этилена
Н2С – СН2 +Н2О СН2ОН – СН2ОН
О
При гидратации окиси этилена, кроме этиленгликоля, образуются ди-, три-, тетра- и полиэтиленгликоли. Чтобы уменьшить образование полигликолей, гидратацию проводят с большим избытком воды (на 1 моль окиси этилена берут от 10 до 22 моль воды) и добавляют к водному раствору окиси этилена 0,1—0,5% кислоты. В этих условиях получается этиленгликоль, содержащий лишь немного диэтиленгликоля и следы высших полиэтиленгликолей.
Процесс проводят в жидкой фазе в присутствии катализаторов (небольшое количество кислоты — серной, фосфорной или щавелевой) при 50—100°С и атмосферном давлении или без катализатора — при 10 ат и 190—200° С.
Гидратацию окиси этилена при атмосферном давлении можно проводить, обрабатывая раствором кислоты контактные газы процесса прямого окисления этилена. Получаемый разбавленный раствор этиленгликоля нейтрализуют, отгоняют большую часть воды и далее фракционной перегонкой удаляют остатки воды и высшие гликоли.
В отсутствие катализаторов гидратацию окиси этилена проводят обычно под давлением 10 ат. при мольном соотношении окиси этилена и воды примерно 1 16; продолжительность контакта 30 мин. Раствор гликолей упаривают в многокорпусном выпарном аппарате до содержания воды около 15% и далее подвергают ректификации. Соковый пар из последнего аппарата конденсируют и конденсат, содержащий 0,5—1,0% этиленгликоля, возвращают на гидратацию свежей окиси этилена. На 1 т этиленгликоля получается примерно 120 кг диэтиленгликоля и 30 кг триэтилен- гликоля.
Общий выход гликолей (считая на окись этилена) при получении их методом гидратации превышает 90%.
Технологическая схема получения этиленгликоля гидратацией окиси этилена
Процесс проводят без катализаторов при температуре 200°С под давлением, обеспечивающим сохранение смеси в жидком состоянии. Исходную шихту готовят из свежего и оборотного водного конденсата и оксида этилена, причем концентрация оксида 12—14% (масс.), что соответствует примерно 115-кратному мольному избытку воды по отношению к α-оксиду.
Оксид этилена, свежий и оборотный конденсат подают под давлением в смеситель 1 и затем в паровой подогреватель 2. Там шихта нагревается до 130—150°С и поступает в реактор 3 адиабатического типа. Смесь проходит вначале по нейтральной трубе аппарата и дополнительно подогревается горячей реакционной массой, находящейся в объеме реактора, где и протекает образование продуктов. Кроме этиленгликоля, ди- и триэтиленгликоля, побочно получаются ацетальдеги (за счет изомеризации оксида этилена) и продукты его уплотнения. По выходе из реактора жидкость, нагретую до 200°С, дросселируют до атмосферного давления, причем часть воды испаряется, а жидкость охлаждается до 105—110°С.
Смесь поступает в аппарат 4, являющийся первой ступенью многокорпусной выпарной установки, следующие ступени которой работают при все более глубоком вакууме (вплоть до 133 Па) и обогреваются за счет сокового пара с предыдущей стадии [на схеме показана, кроме первой (в аппарате 4), только последняя ступень выпаривания аппарате 5]. Выходящую из аппарата 5 кубовую жидкость для отделения остатков воды подвергают ректификации в вакуумной колонне 7, причем все водные конденсаты объединяют и возвращают на приготовление исходной шихты и затем на реакцию. Смесь гликолей из колонны 7 поступает в вакуумную колонну 8, где отгоняют достаточно чистый этиленгликоль, а в кубе остается смесь ди- и триэтиленгликоля. Эти продукты также представляют большую ценность, и их разделяют на дополнительной вакуум-ректификационной установке.
Рисунок 1.
Технологическая схема получения этиленгликоля
1 – смеситель; 2 – паровой подогреватель; 3 – реактор; 4, 5 – выпарные аппараты; 6 – конденсатор; 7,8 – ректификационные колонны.
Реакционный узел
Реакция производства этиленгликолей и диэтиленгликоля осуществляется при большом избытке второго реагента (т. е. при недостатке α-оксида), Теплота реакции воспринимается избыточным реагентом, за счет чего температура реакционной массы повышается всего на 40 — 50° С. Это дает возможность осуществлять процесс в адиабатических и полностью гомогенных условиях, т. е. с заранее приготовленным раствором α-оксида в воде или спирте. Для поддержания реакционной массы в жидком состоянии при 150 — 200 °С необходимо давление ≈ 2 МПа.
Для таких процессов используют непрерывно действующие реакционные колонны, не имеющие поверхностей теплообмена (рисунок 2). Исходная смесь, предварительно подогретая паром, подается сверху и поступает в низ колонны по центральной трубе, в которой она подогревается реакционной массой. Продукты реакции выходят сверху. Время контакта при получении гликолей в отсутствие катализаторов составляет 20 — 30 минут, что обусловливает наличие в таких аппаратах значительного продольного перемешивания, снижающего селективность.
Для непрерывного осуществления таких реакций, но в более интенсифицированном режиме (синтез гликолей при катализе фосфорной кислотой, получение этаноламинов под давлением), наиболее подходят кожухотрубные реакторы (рисунок 3). В них обратное перемешивание незначительно, и процесс протекает с более высокой селективностью.
Рисунок 2.
Адиабатический реактор
Рисунок 3.
Кожухотрубный реактор
Технологическая схема совместного получения этиленгликоля и окиси этилена в стационарном слое катализатора
В трубчатый реакционный аппарат 2 подают смесь этилена, оборотного газа и кислорода. Тепло экзотермической реакции окисления этилена отбирается кипящим в межтрубном пространстве аппарата 2 теплоносителем. Тепло конденсации паров теплоносителя используется в котле-утилизаторе 1 для получения водяного пара.
Продукты реакции из нижней части реактора 2 через теплообменник 8 поступают в абсорбер 5, где окись этилена поглощается водой. Непоглощенные газы компримируют и разделяют на три потока один поток возвращают в реактор 2, другой направляют в колонну 3 через абсорбер 4 для отгонки СО2 и третий выводят из производственного цикла. Благодаря этому в системе поддерживается высокая концентрация этилена и предотвращается накопление в газах инертных примесей, главным образом двуокиси углерода.
Из нижней части абсорбера 5 водный раствор окиси этилена через теплообменник 8 направляют в колонный аппарат 9, где окись этилена отгоняют от воды, возвращаемой в абсорбер для абсорбции окиси этилена. В колонне 10 окись этилена отделяют от легколетучих примесей (СО2, N2, С2Н4) и либо направляют на обезвоживание в колонну 12 для получения товарной окиси этилена, либо подвергают гидратации в этиленгликоли (реактор 11); последние концентрируют в аппарате 13 и разделяют в колонне 14.
Рисунок 4
Технологическая схема совместного производства окиси этилена и этиленгликолей
1 — котел-утилизатор; 2 — реактор; 3 — колонна для отгонки СО2; 4 — абсорбер СО2; 5 — абсорбер окиси этилена; б — компрессор; 7—холодильник; 3 — теплообменник; 9 — колонна для отгонки окиси этилена; 10 — колонна для отгонки легких компонентов; 11 — реактор для синтеза гликолей; 12 — колонии для обезвоживания окиси этилена; 13 — дегидрагатор; 14 — гликолевая колонна.
Применение этиленгликоля
При отщеплении молекулы воды от этиленгликоля путем его нагревания в присутствии водоотнимающих средств должна была бы образоваться окись этилена. Однако практически в зависимости от условий реакции (катализатор, температура) образуются полигликоли, а также диоксан или ацетальдегид.
При нитровании этиленгликоля концентрированной азотной кислотой в присутствии концентрированной серной кислоты образуется динитрат гликоляпо взрывчатым свойствам равноценный нитроглицерину. На основе динитрата гликоля изготовляют динамиты, замерзающие при низкой температуре (—23°С). В качестве взрывчатых веществ применяют также продукты нитрования диэтиленгликоля альдегидами и кетонами этиленгликоль вступает в реакции, характерные для соединений, содержащих гидроксильную группу. Например, с ацетальдегидом он образует 2-метил-1, 3-диоксолан.
С двухосновными кислотами этиленгликоль образует линейные высокомолекулярные полиэфиры. Такие полиэфиры применяются как пленкообразующие вещества для лаков и красок, и особенно для производства синтетических волокон. Так, из этиленгликоля и диметилового эфира терефталевой кислоты получают полиэтилентерефталаты, из которых изготовляется волокно лавсан.
Будучи весьма гигроскопичным, этиленгликоль в то же время хорошо растворяет смолы, красители и некоторые вещества растительного происхождения. Благодаря сочетанию этих свойств этиленгликоль применяется при крашении тканей, в ситцепечатании, для приготовления штемпельных красок и косметических препаратов, для увлажнения табака и т. д. Так же этиленгликоль с успехом применяется для приготовления антифризов.
Список литературы
1. Краткая химическая энциклопедия. Ред. кол. И.Л. Кнунянц (отв. ред) и др., т. 5 – М.. «Советская энциклопедия». 1961.
2. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. 3-е изд., перераб. – М. Химия, 1981 г. – 608с.
3. Писаренко А. П., Хавин З. Я. Курс органической химии. Учебник для вузов. Изд 3-е, перераб. И доп. М., «Высш. Школа», 1975. – 507с.
4. Петров А. А., Бальян Х.В., Прощенко А.Т. Органическая химия Учебник для вузов. // Под ред. Стадничука М.Д. – 5-е изд., перераб и доп. – СПб. «Иван Федоров». 2002. – 624с.
5. Юкельсон И.И. Технология органического синтеза – М. Химия 1968 г. – 625с.