Распределение температуры по сечению балки
Министерство образования Российской Федерации
Архангельский государственный технический университет
Факультет промышленной энергетики ПТЭIII-2
Кафедра теплотехники
Реферат
Распределение температуры по сечению балки.
Руководитель работы С.И. Осташев
Студент Шафоростов А.В.
Архангельск
2009
Содержание
Задание
Расчет распределения температуры по сечению балки явным методом
Расчет распределения температуры по сечению балки неявным методом
Список литературы
Задание
Необходимо нагреть груз прямоугольного сечения. Теплота с помощью нагревателя подводится с одной из сторон. Нагреватель должен работать до тех пор, пока температура противоположной стороны не достигнет заданного значения Tk. Первоначально груз имел температуру Tн. Остальные 3 поверхности окружены воздухом с температурой T∞. Коэффициент теплоотдачи от этих поверхностей α. Температура нагревания TS.
Сколько времени должен работать нагреватель, чтобы минимальная температура на противоположной стороне бруса составила Tк. Расчёты выполнить явным и неявным методом.
распределение температура сечение балка
Расчет распределения температуры по сечению балки явным методом
Методика численного решения задач нестационарной теплопроводности аналогична рассмотренной методике решения задач стационарной теплопроводности. При решении нестационарных задач для каждого узла необходимо дополнительно учесть аккумулирование энергии — в материале, величина которой определяется теплофизическими свойствами материала. Принцип метода заключается в определении температуры в узле в момент времени τ+Δτ, зная температуру в этом узле и в соседних узлах в предыдущий момент времени τ, поэтому этот метод и называется явным.
Чтобы решить задачу нестационарной теплопроводности численным методом необходимо знать начальное распределение температуры в твердом теле (временные граничные условия). Обычно в качестве такого условия тело рассматривают изотермичным, а температуры во всех узлах — равными начальной температуре тела. Затем, после расчета всех температур в момент времени Δτ процесс повторяют и рассчитывают температур в момент времени 2Δτ. Эту процедуру повторяют до тех пор, пока не будет достигнут момент времени, для которого требуется знать распределение температуры.
Следует также иметь в виду, что для выделения единственности решения дифференциального уравнения в частных производных вводят дополнительные условия, при этом
1. для избежания противоречивости в условиях постановки задачи убеждаются в решении данной задачи при рассматриваемых условиях путем доказательства теоремы существования решения.
2. для исключения получения бесчисленного множества решений также убеждаются в единственности решения при рассматриваемых условиях путем доказательства теоремы о единственности решения.
3. для исключения противоречивости решения проверяют задачу на устойчивость. Устойчивой называется задача математической физики, в которой при достаточно малом изменении аргумента наблюдается сколь угодно малое изменение решения. Из изложенного следует, что в данном методе выбор расстояния между узлами Δx и временного интервала Δτ не является произвольным. В противном случае решение не будет устойчивым, а следовательно можно получить результаты, противоречащие основным законам термодинамики.
Явные разностные уравнения баланса и критерии устойчивости для десяти узлов поверхности балки имеют следующий вид
где Bi=α·Δx/λ — число Био, где a — коэффициент теплоотдачи от среды к омываемой поверхности, Вт/ (м К);
Δх — шаг по пространству, м;
λ — коэффициент теплопроводности материала стенки, Вт/ (м-К);
Принимаю Δх=0,05 м (см. рис.1), тогда критерий Био Bi=84·0,05/69,2=0,06069. Принимаю Δτ=5,248с, тогда критерий Фурье Fo=69,2·5,248/ (0,052·465·7860) =0,03974. Условие устойчивости, удовлетворяющее всем десяти уравнениям Fo (l+Bi) <0,25 Проверяем условие устойчивости 0,03974· (1+0,06069) = 0,04216<0,25
Условие выполняется, решаем уравнения.
Распределение температуры по сечению балки.
Время
Температура, град С, в узле
1
2
3
4
5
6
7
8
9
10
0
54
54
54
54
54
54
54
54
54
54
5,248
72,367
72,521
72,521
72,521
72,367
53,691
53,846
53,846
53,846
53,691
10,5
89,185
89,558
89,564
89,558
89,185
54,882
55,17
55,177
55,17
54,882
15,74
104,65
105,28
105,3
105,28
104,65
57,315
57,733
57,749
57,733
57,315
20,99
118,93
119,85
119,9
119,85
118,93
60,77
61,324
61,356
61,324
60,77
26,24
132,16
133,4
133,47
133,4
132,16
65,063
65,766
65,817
65,766
65,063
31,49
144,48
146,03
146,14
146,03
144,48
70,037
70,905
70,979
70,905
70,037
36,74
155,98
157,85
158
157,85
155,98
75,56
76,609
76,711
76,609
75,56
41,98
166,75
168,94
169,14
168,94
166,75
81,519
82,766
82,901
82,766
81,519
47,23
176,88
179,39
179,65
179,39
176,88
87,819
89,279
89,452
89,279
87,819
52,48
186,43
189,26
189,57
189,26
186,43
94,379
96,066
96,282
96,066
94,379
57,73
195,46
198,6
198,97
198,6
195,46
101,13
103,06
103,32
103,06
101,13
62,98
204,02
207,47
207,9
207,47
204,02
108,02
110,2
110,51
110,2
108,02
68,22
212,16
215,9
216,4
215,9
212,16
114,99
117,43
117,8
117,43
114,99
73,47
219,91
223,95
224,51
223,95
219,91
122,01
124,71
125,15
124,71
122,01
78,72
227,32
231,63
232,26
231,63
227,32
129,05
132,02
132,51
132,02
129,05
83,97
234,4
238,99
239,68
238,99
234,4
136,06
139,31
139,87
139,31
136,06
89,22
241,18
246,04
246,8
246,04
241,18
143,03
146,56
147, 19
146,56
143,03
94,46
247,69
252,81
253,64
252,81
247,69
149,95
153,75
154,45
153,75
149,95
99,71
253,95
259,32
260,22
259,32
253,95
156,79
160,86
161,64
160,86
156,79
105
259,97
265,59
266,55
265,59
259,97
163,53
167,89
168,74
167,89
163,53
110,2
265,77
271,63
272,66
271,63
265,77
170,18
174,81
175,74
174,81
170,18
115,5
271,36
277,47
278,56
277,47
271,36
176,72
181,62
182,63
181,62
176,72
120,7
276,77
283,1
284,26
283,1
276,77
183,14
188,32
189,4
188,32
183,14
И так из результатов расчёта явным методом следует, что следует работать 73,47 сек, чтобы минимальная температура на противоположной стороне балки (узлы 6 и 10) была равна Tк=122˚С.
Расчет распределения температуры по сечению балки неявным методом
Основной недостаток явного численного метода состоит в том, что разностные уравнения баланса энергии для каждого узла должны удовлетворять критерию устойчивости. Чтобы удовлетворять критерию устойчивости в практике приходится выбирать очень маленький шаг по времени, и это приводит к значительному возрастанию объёма расчётов. Рассмотрим другой метод, который является устойчивым при любых значениях чисел Bi и Fo. Суть его заключается в том, что уравнение баланса, полученное для явного метода, модифицирует, выражая через температуру в момент времени τ+Δτ. В этом методе разностные уравнения необходимо записывать для всех узлов, поэтому метод получил название неявного. Данный метод в математике называют методом использования левых производных, т.к. производная по времени опраксимируется разностью. Очевидно, что существенное преимущество неявного метода — это отсутствие критериев устойчивости, а недостаток — необходимость решения системы алгебраических уравнений (в отличие от неявного метода в явном можно решать разностные уравнения отдельно для каждого узла).
1. (1+2Fo· (2+Bi)) · (T1) τ+Δτ-2·Fo· (1/2· (T6) τ+Δτ + (T2) τ+Δτ + Bi·T∞ + 1/2·Ts) — (T1) τ =0
2. (1+4Fo) · (T2) τ+Δτ — Fo· ( (T1) τ+Δτ + (T3) τ+Δτ + (T7) τ+Δτ + Ts) — (T2) τ =0
3. (1+4Fo) · (T3) τ+Δτ — Fo· ( (T2) τ+Δτ + (T4) τ+Δτ + (T8) τ+Δτ + Ts) — (T3) τ =0
4. (1+4Fo) · (T4) τ+Δτ — Fo· ( (T3) τ+Δτ + (T5) τ+Δτ + (T9) τ+Δτ + Ts) — (T4) τ =0
5. (1+2Fo· (2+Bi)) · (T5) τ+Δτ-2·Fo· (1/2· (T10) τ+Δτ+ (T4) τ+Δτ + Bi·T∞ + 1/2·Ts) — (T5) τ =0
6. (1+4Fo· (1+Bi)) · (T6) τ+Δτ — 4·Fo· (1/2· (T1) τ+Δτ + 1/2· (T7) τ+Δτ + Bi·T∞) — (T6) τ =0
7. (1+2Fo· (2+Bi)) · (T7) τ+Δτ-2·Fo· (1/2· (T6) τ+Δτ+1/2· (T8) τ+Δτ+Bi·T∞+ (T2) τ+Δτ) — (T7) τ =0
8. (1+2Fo· (2+Bi)) · (T8) τ+Δτ-2·Fo· (1/2· (T7) τ+Δτ+1/2· (T9) τ+Δτ+Bi·T∞+ (T3) τ+Δτ) — (T8) τ =0
9. (1+2Fo· (2+Bi)) · (T9) τ+Δτ-2·Fo· (1/2· (T8) τ+Δτ+1/2· (T10) τ+Δτ+Bi·T∞+ (T4) τ+Δτ) — (T9) τ =0
10. (1+4Fo· (1+Bi)) · (T10) τ+Δτ — 4·Fo· (1/2· (T5) τ+Δτ + 1/2· (T9) τ+Δτ + Bi·T∞) — (T10) τ =0
1.95-0.460.000.000.00-0.230.000.000.000.00 120,21
0.231.92-0.230.000.000.00-0.230.000.000.00 119,6
0.00-0.231.92-0.230.000.000.00-0.230.000.00 119,6
0.000.00-0.231.92-0.230.000.000.00-0.230.00 119,6
0.000.000.00-0.461.950.000.000.000.00-0.23 120,21
0.460.000.000.000.001.98-0.460.000.000.00 1,23
0.00-0.460.000.000.00-0.231.95-0.230.000.00 0,61
0.000.00-0.460.000.000.00-0.231.95-0.230.00 0,61
0.000.000.00-0.460.000.000.00-0.231.95-0.23 0,61
0.000.000.000.00-0.460.000.000.00-0.461.98 1,23
шаг по пространству — 0.05
шаг по времени — 30.00
начальная температура — 54.0
Распределение температуры по сечению балки
Время
Температура, град С, в узле
1
2
3
4
5
6
7
8
9
10
0
54
54
54
54
54
54
54
54
54
54
30
129,13
130,78
130,98
130,78
129,13
75,75
76,88
77,04
76,88
75,75
60
184,96
188,34
188,84
188,34
184,96
107,37
109,88
110,28
109,88
107,37
90
228,22
233,21
234,06
233,21
228,22
141,71
145,64
146,44
145,64
141,71
120
262,88
269,29
270,5
269,29
262,88
175,23
180,64
181,83
180,64
175,23
150
291,32
298,98
300,53
298,98
291,32
206,32
213,14
214,73
213,14
206,32
180
315,07
323,81
325,68
323,81
315,07
234,35
242,48
244,46
242,48
234,35
210
335,14
344,82
346,98
344,82
335,14
259,23
268,53
270,87
268,53
259,23
240
352,23
362,73
365,15
362,73
352,23
281,08
291,43
294,11
291,43
281,08
270
366,87
378,08
380,72
378,08
366,87
300,17
311,44
314,42
311,44
300,17
300
379,45
391,27
394,11
391,27
379,45
316,78
328,86
332,1
328,86
316,78
330
390,28
402,63
405,64
402,63
390,28
331,2
343,98
347,45
343,98
331,2
360
399,62
412,43
415,59
412,43
399,62
343,69
357,1
360,77
357,1
343,69
И так из результатов расчёта неявным методом следует, что следует работать 73,47 сек, чтобы минимальная температура на противоположной стороне балки (узлы 6 и 10) была равна Tк=122˚С.
Список литературы
1. Лекции “Моделирование процессов теплообмена”.