Госстандарт России по электрооборудованию

ГОСТ 433-73
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
КАБЕЛИ СИЛОВЫЕ С РЕЗИНОВОЙ ИЗОЛЯЦИЕЙ
ТЕХНИЧЕСКИЕ УСЛОВИЯ

Rubber-insulated power cables. Specifications
Дата введения 01.01.75

ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР
РАЗРАБОТЧИКИ А.Г. Григорьян, А.И. Балашов, А.А. Арутюнов
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 25.05.73 № 1318
Изменение № 6 принято Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 3 от 18.02.93)
За принятие проголосовали

Наименование государства
Наименование национального органа по стандартизации

Азербайджанская Республика
Азгосстандарт

Республика Армения
Армгосстандарт

Республика Белоруссия
Белстандарт

Республика Грузия
Грузстандарт

Республика Казахстан
Госстандарт Республики Казахстан

Республика Молдова
Молдовастандарт

Российская Федерация
Госстандарт России

Туркменистан
Туркменглавгосинспекция

Республика Узбекистан
Узгосстандарт

Украина
Госстандарт Украины

3. Срок проверки — 1994 г.
4. ВЗАМЕН ГОСТ 433-58
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка
Номер пункта

ГОСТ 12.2.007. 14-75
2а.1

ГОСТ 20.57.406-81
4.4.1-4.4.4

ГОСТ 427-75
4.2.1

ГОСТ 1292-81
2.4.6, 2.9

ГОСТ 1497-84
4.2.2

ГОСТ 2990-78
4.3.2

ГОСТ 3345-76
4.3.2, 4.3.4

ГОСТ 5960-72
2.9

ГОСТ 6904-83
2.9

ГОСТ 7006-72
2.4.11, 3.2.2, 4.2.4

ГОСТ 7229-76
4.3.1

ГОСТ 12177-79
4.2.1

ГОСТ 14192-96
5.2

ГОСТ 15150-69
Вводная часть, 4.1, 5.4, 5.5

ГОСТ 18690-82
5.1

ГОСТ 21930-76
2.9

ГОСТ 21931-76
2.9

ГОСТ 22483-77
2.4.1, 2.5.1а

ГОСТ 23286-78
1.6, 2.5.3

ГОСТ 24234-80
2.9

ГОСТ 24641-81
2.4.6, 3.2.2, 4.2.3

ГОСТ 24662-81
2.9

ТУ 6-01-1307-85
2.9

ТУ 6-017-1123-83
2.9

ТУ 6.48-23-89
2.9

ТУ 16.К71-087-90
2.9

ТУ 16.К71-088-90
2.9

ТУ 16.К71-098-90
2.9

ТУ 17-05-021-90
2.9

ТУ 38.105.1849-88
2.9

ТУ 412.651-88
2.9

6. Снято ограничение срока действия по Протоколу 5-94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12-94).
7. ПЕРЕИЗДАНИЕ (август 1997 г.) с Изменениями № 1, 2, 3, 4, 5, 6, утвержденными в январе 1977 г., августе 1979 г., августе 1985 г., январе 1987 г., июне 1990 г., марте 1996 г. (ИУС 3-77, 10-79, 11-85, 4-87, 9-90, 6-96).
Настоящий стандарт распространяется на силовые кабели с медными или алюминиевыми жилами с резиновой изоляцией, в свинцовой, поливинилхлоридной или резиновой оболочке, с защитными покровами или без них, предназначенные для неподвижной прокладки в электрических сетях напряжением 660 В переменного тока частотой 50 Гц или 1000 В постоянного тока и на напряжение 3000, 6000 и 10000 В постоянного тока.
Кабели предназначены для прокладки на трассах с неограниченной разностью уровней.
Стандарт устанавливает требования к кабелям, изготовляемым для нужд народного хозяйства и для поставки на экспорт в районы с умеренным и тропическим климатом.
Виды климатического исполнения — У и Т, категории размещения 2, 3, 4, 5 по ГОСТ 15150.
Требования настоящего стандарта являются обязательными.
(Измененная редакция, Изм. № 6).

1. МАРКИ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
1.1. Марки и преимущественные области применения кабелей должны соответствовать указанным в табл. 1.
Таблица 1

Обозначение марки кабеля
Оболочка
Преимущественная область

с алюминиевой жилой
с медной жилой
и защитный покров
применения

АСРГ
СРГ
Свинцовая оболочка
Для прокладки внутри помещений, в каналах, туннелях, в местах, не подверженных вибрации, в условиях отсутствия механических воздействий на кабель, в среде нейтральной по отношению к свинцу

АСРБ
СРБ
Свинцовая оболочка, защитный покров типа Б
Для прокладки в земле (траншеях), если кабель не подвергается значительным растягивающим усилиям

АСРБГ
СРБГ
Свинцовая оболочка, защитный покров типа БГ
Для прокладки внутри помещений, в каналах, туннелях, если кабель не подвергается значительным растягивающим усилиям

АСРБ2лГ
СРБ2лГ
Свинцовая оболочка, защитный покров типа Б2лГ
То же, для метрополитена

АВРГ
ВРГ
Поливинилхлоридная оболочка
Для прокладки внутри помещений, в каналах, туннелях, в условиях отсутствия механических воздействий на кабель и при наличии агрессивных сред (кислот, щелочей и др.)

АВРБ
ВРБ
Поливинилхлоридная оболочка, защитный покров типа Б
Для прокладки в земле (траншеях), если кабель не подвергается значительным растягивающим усилиям

АВРБГ
ВРБГ
Поливинилхлоридная оболочка, защитный покров типа БГ
Для прокладки внутри помещений, в каналах, туннелях, если кабель не подвергается значительным растягивающим усилиям

АНРГ
НРГ
Резиновая маслостойкая оболочка, не распространяющая горение
Для прокладки внутри помещений, в каналах, туннелях, в условиях отсутствия механических воздействий на кабель

АНРБ
НРБ
Резиновая маслостойкая оболочка, не распространяющая горение, защитный покров типа Б
Для прокладки в земле (траншеях), если кабель не подвергается значительным растягивающим усилиям

АНРБГ
НРБГ
Резиновая маслостойкая оболочка, не распространяющая горение, защитный покров типа БГ
Для прокладки внутри помещений, в туннелях, каналах, если кабель не подвергается значительным растягивающим усилиям

АВРБн
ВРБн
Поливинилхлоридная оболочка, защитный покров типа Бн
Для прокладки в земле (траншеях), если кабель не подвергается значительным растягивающим усилиям и в случае, когда требуется стойкость к распространению горения

Примечание. Кабели применяют при повышенных требованиях стойкости к коротким замыканиям (в том числе повторным) и аварийным кратковременным воздействиям температуры до 200 °С.
Коды ОКП приведены в приложении.
К обозначению марок кабелей, предназначенных для эксплуатации в районах с тропическим климатом, добавляют через дефис букву Т, кабелей круглой или плоской формы с заполнением, предназначенных для прокладки в электроустановках, требующих уплотнения при вводе, — букву «з», кабелей с однопроволочными жилами — буквы «ож» в скобках.
(Измененная редакция, Изм. № 1-6).
1.2. Число жил, номинальное сечение и номинальное напряжение кабелей должны соответствовать указанным в табл. 2.
Все жилы двухжильных кабелей должны быть одинакового сечения.
Все жилы трех- и четырехжильных кабелей должны быть одинакового сечения или одна жила должна быть меньшего сечения (нулевая или жила заземления).
Номинальные сечения нулевых жил и жил заземления должны соответствовать указанным в табл. 2а.

Таблица 2

Номинальное напряжение кабеля, В

Обозначение марки кабеля
Число жил
переменного тока
постоянного тока

660
3000
6000
10000

Номинальное сечение жил, мм2

СРГ
1
1-240
1,5-500
2,5-500
240-400

АСРГ
1
4-300
4-500
4-500
240-400

СРГ
2-4
1-185


АСРГ
2 и 3
4-240


АСРГ
3 и 4
2,5-240


ВРГ, НРГ
1-4
1-240


АВРГ, АНРГ
1
4-300


2-4
2,5-300


СРБ2лГ, АСРБ2лГ
1

240, 400, 500

СРБГ, АСРБГ
1


95, 240, 400, 500

СРВ, СРБГ, ВРБн, ВРБ, ВРБГ, НРБ, НРБГ
2-4
1,5-185


АСРБ, АСРБГ, АВРБ, АВРБн,
2 и 3
4-240


АВРБГ, АНРБ, АНРБГ
3 и4
2,5-240


Таблица 2а

Наименование жилы
Номинальное сечение, мм2

Основная жила
1,0; 1,5
2,5
4
6
10
16
25
35
50
70
95
120
150
185
240
300
400

Нулевая жила
1,0
1,5
2,5
4
6
10
16
16; 25
25; 35
25; 35; 50
35; 50; 70
35; 70
50; 70; 95
50; 95
70; 120
95; 150
185; 240

Жила заземления
1,0
1,5
2,5
2,5
4
6
10
16
16
25
35
35
50
50
70
95

Примечание. Номинальное сечение нулевой и заземляющей алюминиевой жилы должно быть не менее 2,5 мм2.

1.3 (Исключен, Изм. № 3).
1.4. Номинальная толщина изоляции должна соответствовать указанной в табл. 4. Нижнее предельное отклонение толщины изоляции не должно превышать 0,1 мм + 10 % номинального значения.
Верхнее предельное отклонение не нормируют.
Таблица 4

Номинальное напряжение, В

Номинальное
660 переменного тока или
3000
6000
10000

сечение, мм2
1000 постоянного тока
постоянного тока

Номинальная толщина изоляции, мм

1
1,0


1,5
1,0
1,8

2,5; 4
1,0
1,8
3,0

6
1,0
2,0
3,2

10, 16
1,2
2,0
3,2

25, 35
1,4
2,2
3,2

50, 70
1,6
2,4
3,4

95, 120
1,8
2,6
3,4

150
2,0
2,8
3,6

185
2,2
3,0
3,6

240
2,4
3,2
3,8
5,0

300
2,6
3,4
3,8
5,0

400

3,6
4,0
5,0

500

3,8
4,0

1.4а. Толщина изоляции в местах соприкосновения между изолированными жилами в результате сжатия после их скрутки должна быть не менее 0,75 номинального значения.
1.5. Толщина свинцовой оболочки должна соответствовать указанной в табл. 5.

Таблица 5 мм

Диаметр кабеля под оболочкой
Толщина свинцовой оболочки

минимальная
номинальная
максимальная

До 20
0,8
0,95
1,03

Св. 20 до 23
0,9
1,05
1,13

» 23 » 26
1,0
1,15
1,24

» 26 » 33
1,1
1,25
1,35

» 33 » 36
1,2
1,40
1,51

» 36 » 40
1,3
1,50
1,62

» 40 » 46
1,4
1,60
1,73

» 46 » 53
1,5
1,70
1,84

» 53 » 60
1,6
1,80
1,94

» 60
1,7
1,95
2,11

1.6. Номинальная толщина резиновой оболочки должна соответствовать категории Обр-2, поливинилхлоридной оболочки — категории Обп-2 по ГОСТ 23286.
Нижнее предельное отклонение толщины поливинилхлоридной оболочки не должно быть более 0,1 мм + 15 % номинального значения. Верхнее предельное отклонение для поливинилхлоридной и резиновой оболочек — не более 20 %.
За диаметр под оболочкой для кабелей с параллельно уложенными жилами принимают диаметр изолированной жилы.
1.7. Строительная длина кабелей должна быть не менее 125 м. Допускаются маломерные отрезки длиной не менее 20 м в количестве не более 10 % от общей длины сдаваемой партии кабелей.
Расчетные значения массы и наружного диаметра кабелей должны быть указаны в качестве справочных в документации, утвержденной в установленном порядке.
Примеры условных обозначений
трехжильного кабеля марки СРГ с жилами сечением 50 мм2, на напряжение 660 В
Кабель СРГ 3 ´ 50 — 660 ГОСТ 433-73
То же, марки АВРГ с однопроволочными жилами сечением 70 мм2, на напряжение 660 В
Кабель АВРГ 3 ´ 70 (ОЖ) — 660 ГОСТ 433-73
То же, марки ВРГ тропического исполнения с жилами сечением 150 мм2, на напряжение 660 В
Кабель ВРГ-ТЗ ´ 150 — 660 ГОСТ 433-73
То же, марки ВРГ с заполнением с жилами сечением 25 мм2
Кабель ВРГз 3 ´ 25 — 660 ГОСТ 433-73

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1. Кабели должны изготовляться в соответствии с требованиями настоящего стандарта, нормативно-технической документации (для кабелей, предназначенных для эксплуатации в районах с тропическим климатом) по технологической документации, утвержденной в установленном порядке.
2.2. 2.3. (Исключены, Изм. № 3).
2.4. Требования к конструкции
2.4.1. Токопроводящие жилы должны соответствовать классам 1 и 2 по ГОСТ 22483. Жилы должны быть круглой формы, одно- или многопроволочными; сечение жил должно соответствовать указанному в табл. 5а.
Таблица 5а

Наименование жилы
Сечение жил, мм2

медных
алюминиевых

Однопроволочные жилы
1-50
2,5-240

Многопроволочные жилы
16-240
70-400

Допускается изготовление многопроволочной алюминиевой жилы сечением 16-50 мм2 и уплотненных медных и алюминиевых жил конструкции класса 2.
Однопроволочные алюминиевые жилы сечением 70 мм2 и более должны иметь относительное удлинение не менее 30 %.
2.4.2. Токопроводящие жилы должны быть изолированы резиной. Изоляция должна отделяться от токопроводящей жилы без разрушения. Поверх токопроводящей жилы может быть наложена полиэтилентерефталатная пленка, в том числе с магнитным покрытием. Целостность пленки после наложения изоляции не нормируют.
На поверхности изоляции жил не должно быть трещин и вмятин, а внутри — пузырей, выводящих толщину изоляции за предельные отклонения.
2.4.2а. Изолированные жилы многожильных кабелей должны иметь отличительную расцветку или обозначение цифрами, начиная с нуля. Маркировка изолированных жил может быть выполнена цветной продольной полоской шириной не менее 2 мм. Маркировка расцветкой должна быть устойчивой, нестираемой и различимой. Маркировку цифрами производят печатанием или тиснением. Маркировка печатанием или тиснением должна быть отчетливой. Цвет цифр при маркировке печатанием должен отличаться от цвета жилы. Цифры на отдельных жилах кабелей должны иметь одинаковый цвет.
При цифровом обозначении на поверхности изоляции первой жилы должна быть цифра 1, второй — 2, третьей — 3, четвертой — 4. При этом номеру 1 соответствует белая или желтая, номеру 2 — синяя или зеленая, номеру 3 — красная или малиновая, номеру 4 — коричневая или черная расцветка.
Изоляция жил меньшего сечения (нулевая) может быть любого цвета и не иметь цифрового обозначения.
Изоляция нулевых жил кабелей с жилой равного сечения должна быть черного цвета.
Изоляция жил заземления должна быть двухцветной зелено-желтого цвета или обозначена цифрой 0.
При применении двухцветного вида обозначения на любом участке жилы длиной 15 мм один из этих цветов должен покрывать не менее 30 и не более 70 % поверхности изоляции, а другой — остальную часть. В качестве двухцветной маркировки расцветкой применяют только комбинацию цветов зеленого и желтого.
Для жил другого назначения такая расцветка или обозначение не допускается.
При обозначении изолированных жил цифрами расстояние между ними должно быть не более 35 мм, высота цифр — не менее 4,0 мм.
Одножильные кабели могут быть маркированы любым цветом.

2.4.3, 2.4.4. (Исключены, Изм. № 3).
2.4.5. В многожильных кабелях изолированные жилы должны быть скручены и иметь заполнение. Двухжильные кабели (за исключением бронированных) сечением до 16 мм2 включ. допускаются с параллельно уложенными в одной плоскости жилами и могут иметь плоскую форму при условии соблюдения радиальной толщины оболочки.
Для заполнения промежутков между жилами должны применяться материал оболочки, внутренняя оболочка из невулканизированной резины, резиновые жгуты, непропитанная кабельная пряжа или штапелированная стеклопряжа. Кабели без буквы «з» в обозначении марки могут быть изготовлены без заполнения.
Поверх скрученных или параллельно уложенных жил, а также одножильных кабелей может быть наложена лента из полиэтилентерефталатной пленки или термоскрепленного полотна, или прорезиненной ткани.
2.4.6. На изолированные одножильные и на скрученные или параллельно уложенные жилы многожильных кабелей должна быть наложена оболочка.
Допускается наложение двухслойной резиновой оболочки. Суммарная толщина двухслойной оболочки должна равняться толщине однослойной, при этом толщина наружного слоя должна быть не менее 70 % от толщины однослойной оболочки.
На поверхности резиновой и поливинилхлоридной оболочки не должно быть пузырей, а также вмятин, выводящих толщину оболочки за предельные отклонения.
Свинцовая оболочка должна соответствовать ГОСТ 24641. Свинцовая оболочка кабелей без защитных покровов должна изготавливаться из свинцово-сурьмянистых сплавов по ГОСТ 1292 или другой нормативно-технической документации.
Под оболочкой кабеля на ленте из бумаги натурального цвета или на поливинилхлоридной, или резиновой оболочке не более чем через каждые 300 мм должен быть нанесен отличительный индекс завода-изготовителя и год выпуска кабеля.
Отсутствие ленты по длине кабеля более 1 м не допускается. Ширина ленты — не менее 10 мм. Высота шрифта — не менее 6 мм.
Допускается применение цветной нити для кабелей диаметром под оболочкой менее 20 мм.
2.4.7. Изолированные жилы должны отделяться друг от друга и от оболочки без повреждений.
2.4.5-2.4.7. (Измененная редакция, Изм. № 3).
2.4.8-2.4.10. (Исключены, Изм. № 3).
2.4.11. Защитные покровы кабелей должны соответствовать ГОСТ 7006.
Для бронированных кабелей диаметром оболочки 13-20 мм, кроме кабелей в свинцовой оболочке, допускается применение двух бронелент толщиной 0,3 мм.
2.5. Требования к электрическим характеристикам
2.5.1, 2.5.2. (Исключены, Изм. № 3).
2.5.1а. Электрическое сопротивление токопроводящей жилы постоянному току должно соответствовать ГОСТ 22483.
2.5.2а. Электрическое сопротивление изоляции, пересчитанное на 1 км длины и температуру 20 °С, должно быть не менее 50 МОм.
2.5.3. Изолированные жилы кабелей на напряжение 660 В переменного тока должны выдерживать испытание напряжением переменного тока категории ЭИ-1 или ЭИ-2 по ГОСТ 23286.
Изолированные жилы кабелей постоянного тока после 6 ч пребывания в воде должны выдерживать в течение 5 мин испытание напряжением переменного тока частотой 50 Гц значением 4000 В — для кабелей на напряжение 3000 В, 7000 В — для кабелей на напряжение 6000 В, 10000 В — для кабелей на напряжение 10000 В.
2.5.4. В готовом виде кабели на напряжение 660 В переменного тока без погружения в воду должны выдержать испытание между жилами и между каждой жилой и свинцовой оболочкой напряжением переменного тока значением 3 кВ в течение 10 мин.
Кабели на напряжение постоянного тока без погружения в воду должны выдержать в течение 5 мин испытание между жилой и свинцовой оболочкой напряжением переменного или постоянного тока, указанным в табл. 6.
Таблица 6 В

Кабели на напряжение
Испытательное напряжение

постоянного тока
переменного тока частотой 50 Гц
постоянного тока

3000
4000
6000

6000
7000
12000

10000
10000
20000

Одножильные кабели марок ВРГ, АВРГ, НРГ, АНРГ испытывают до наложения оболочки.

2.5.5. Электрическое сопротивление подушки готовых кабелей марок СРБ2лГ, АСРБ2лГ должно быть не менее 1 МОм×км.
2.6, 2.6.1. (Исключены, Изм. № 3).
2.6а. Требования к стойкости при механических воздействиях
2.6а.1. Кабели должны быть стойкими к навиванию. Диаметр цилиндра, на который должен быть навит отрезок кабеля, должен быть равен 20 (Dн + d) — для одножильных кабелей, 15 (Dн + d) — для многожильных кабелей (где Dн — наружный диаметр кабеля, d — диаметр жилы).
Предельное отклонение диаметра цилиндра — не более плюс 5 %.
2.6а, 2.6а.1. (Введены дополнительно, Изм. № 6).
2.7, 2.7.1. (Исключены, Изм. № 4).
2.7а. Требования к стойкости при климатических воздействиях
2.7а.1. Кабели должны быть стойкими к воздействию следующих факторов
— максимальной температуры окружающей среды — до плюс 50 °С;
— минимальной температуры окружающей среды — до минус 50 °С;
— относительной влажности воздуха — до 98 % при температуре окружающей среды до 35 °С.
2.7а.2. Кабели в тропическом исполнении должны быть грибостойкими.
2.7а, 2.7а.1, 2.7а.2. (Введены дополнительно, Изм. № 6).
2.7.2. (Исключен, Изм. № 3).
2.8. Срок службы
2.8.1. Срок службы кабелей — 30 лет.
Изменение физических характеристик кабеля к концу срока службы настоящим стандартом не нормируется.
2.9. Материалы, применяемые для изготовления кабелей, должны соответствовать
— проволока медная круглая — марке ММ по ТУ 16.К71-087;
— проволока алюминиевая круглая
для многопроволочных жил — марке АМ или АПТ по ТУ 16.К71-088;
— поливинилхлоридный пластикат — ГОСТ 5960;
— пряжа кабельная — ТУ 17-05-021;
— пленка полиэтилентерефталатная — ГОСТ 24234;
— нить полиэфирная техническая — ГОСТ 24662;
— пряжа хлопчатобумажная — ГОСТ 6904 и другой нормативно-
технической документации;
— оловянно-свинцовые припои — ГОСТ 21930 и ГОСТ 21931;
— сплав свинцово-сурьмянистый — маркам ССуМ, ССуМГ по ГОСТ 1292;
— резина для изоляции, оболочки и заполнения — по ТУ 16.К71-098, пластикат поливинилхлоридный ОМ-25 для оболочки и заполнения — по ТУ 6-01-1307, прорезиненная ткань — по ТУ 38.105.18.49, штапелированная стеклопряжа — по ТУ 6.48-23, лента полиэтилентерефталатная с магнитным покрытием — по ТУ 6-17-1123, лента из термоскрепленного полотна — по ТУ 412.651.

2а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
2а.1. Требования безопасности — по ГОСТ 12.2.007.14.
Раздел 2а. (Введен дополнительно, Изм. № 6).

3. ПРАВИЛА ПРИЕМКИ
3.1. Для проверки соответствия качества кабелей требованиям настоящего стандарта установлены следующие испытания приемосдаточные, периодические, типовые.
3.2. Приемо-сдаточные испытания
3.2.1. Кабели предъявляют к приемке партиями. За партию принимают кабели одной марки, напряжения и сечения, одновременно предъявляемые к приемке.
3.2.2. Испытания проводят в объеме, указанном в табл. 7, по плану сплошного контроля с приемочным числом С = 0.
Таблица 7

Группа
Наименование проверок
Пункт

испытаний
и испытаний
технических требований
методов испытаний

С-1
Проверка конструктивных элементов и основных размеров
1.2, 1.4-1.7, 2.4.1, 2.4.2, 2.4.2а, 2.4.5, 2.4.6
4.2.1

Определение отделяемости изолированных жил друг от друга и от оболочки
2.4.7
4.2.1

С-2
Проверка конструкции защитных покровов
2.4.11
4.2.4

С-3
Определение электрического сопротивления токопроводящей жилы постоянному току
2.5.1а
4.3.1

Определение электрического сопротивления изоляции
2.5.2а
4.3.2

Испытание напряжением
2.5.3, 2.5.4
4.3.3

Определение электрического сопротивления подушки готовых кабелей
2.5.5
4.3.4

С-4
Проверка маркировки, упаковки
5.1-5.3
4.6

Проверку по пп. 1.7 и 2.5.3 проводят в процессе производства.
3.3. Периодические испытания
3.3.1. Периодические испытания следует проводить на кабелях, прошедших приемо-сдаточные испытания.
Состав испытаний, их периодичность и объем выборки должны соответствовать указанным в табл. 8.
Таблица 8

Группа
Наименование
Пункт

испытаний
проверок и испытаний
технических требований
методов испытаний
Периодичность
Объем выборки

П-1
Определение относительного удлинения однопроволочных алюминиевых жил
2.4.1
4.2.2
Не реже одного раза в сутки
Образцы от 3 строительных длин кабелей каждого сечения, изготовленных в данные сутки

П-2
Испытание свинцовой оболочки
2.4.6
4.2.3
В соответствии с ГОСТ 24641
Образцы от 3 строительных длин, изготовленных за один технологический цикл опрессования, без перерывов, связанных с переходом на другую марку сплава

П-3
Испытание защитных покровов
2.4.11
4.2.4
В соответствии с ГОСТ 7006
В соответствии с ГОСТ 7006

П-4
Определение стойкости кабелей к навиванию
2.6а.1
4.5.1
Не реже одного раза в год
Образцы от 3 строительных длин кабелей каждого вида оболочки, одно- и многожильных

П-5
Испытание на нестираемость, отчетливость и расстояние между цифрами
2.4.2а
4.2.1
Не реже одного раза в год
Образцы от 3 строительных длин, изготовленных в текущем году

3.3.2. Испытания проводят по плану выборочного двухступенчатого контроля с объемом выборки n1 = n2, составленным случайным отбором, с приемочным числом С1 = 0 и браковочным числом С2 = 2 для первой выборки и приемочным числом С1 = 1 для суммарной (n1 и п2) выборки.
3.4. Типовые испытания на соответствие требованиям настоящего стандарта должны проводить по программе, утвержденной в установленном порядке.
3.5. Потребитель проводит входной контроль не менее чем на 3 % строительных длин кабелей от партии, но не менее чем на трех строительных длинах. За партию принимают кабели одной марки, напряжения и сечения, полученные по одному сопроводительному документу.
При получении неудовлетворительных результатов испытаний проводят повторные испытания на удвоенном числе строительных длин.
Результаты повторных испытаний распространяют на всю партию.

4. МЕТОДЫ ИСПЫТАНИЙ
4.1. Испытания следует проводить в нормальных климатических условиях по ГОСТ 15150.
4.2. Проверка конструкции
4.2.1. Проверку конструктивных размеров элементов кабеля (пп. 1.2; 1.4-1.5) проводят по ГОСТ 12177.
Проверку конструкции токопроводящих жил (п. 2.4.1), числа жил (п. 1.2), отсутствия дефектов на поверхности изоляции (п. 2.4.2) и оболочки (п. 2.4.6), скрутки изолированных жил и наличия заполнения (п. 2.4.5), а также отделяемости изолированных жил друг от друга и от оболочки (п. 2.4.7) проводят путем разбора и осмотра каждого конца кабеля на длине не менее 300 мм.
Проверку маркировки (пп. 2.4.2а и 2.4.6) проводят внешним осмотром без применения увеличительного прибора и измерениями с помощью линейки по ГОСТ 427.
Проверку качества маркировки цветной полоской или обозначением цифрами осуществляют легким десятикратным протиранием (в двух противоположных направлениях) ватным или марлевым тампоном, смоченным водой. Кабель считают выдержавшим испытания, если не происходит окрашивания тампона.
Строительную длину (п. 1.7) измеряют в процессе производства с помощью устройства, обеспечивающего погрешность измерения длины в пределах ± 1 %.
4.2.2. Определение относительного удлинения алюминиевой жилы (п. 2.4.1) проводят по ГОСТ 1497 на образцах с расчетной длиной 200 мм.

4.2.3. Проверку и испытание свинцовой оболочки (п. 2.4.6) проводят по ГОСТ 24641.
4.2.4. Проверку и испытание защитных покровов (п. 2.4.11) проводят по ГОСТ 7006.
Испытание на холодостойкость проводят при температуре окружающей среды минус (50 ± 2) °С. Диаметры испытательных цилиндров должны соответствовать указанным в п. 2.6а.1.
Длина образца должна быть достаточной для одного полного витка.
4.3. Проверка электрических параметров
4.3.1. Электрическое сопротивление жилы постоянному току (п. 2.5.1а) измеряют по ГОСТ 7229.
Время выдержки строительной длины кабеля в помещении до измерения электрического сопротивления жилы при возникновении разногласий при испытаниях должно быть не менее 24 ч.
4.3.2. Электрическое сопротивление изоляции (п. 2.5.2а) измеряют по ГОСТ 3345.
Измерение электрического сопротивления изоляции одножильных кабелей проводят в воде на образцах кабеля длиной не менее 5 м. Концы кабелей должны быть выведены из воды на длину не менее 0,5 м.
4.3.3. Испытание напряжением (пп. 2.5.3 и 2.5.4) проводят по ГОСТ 2990.
4.3.4. Измерение электрического сопротивления подушки (п. 2.5.5) проводят между свинцовой оболочкой и броней по ГОСТ 3345.

4.4. Проверка стойкости при климатических воздействиях
4.4.1. Испытание на теплостойкость (п. 2.7а.1) проводят на образцах длиной не менее 1 м по ГОСТ 20.57.406 (метод 201-1.2). Время выдержки образцов в камере должно быть не менее 24 ч.
После извлечения из камеры образцы выдерживают в нормальных климатических условиях в течение 1 ч, после чего они должны выдержать испытание переменным напряжением, указанным в п. 2.5.4.
4.4.2. Испытания кабелей на холодостойкость (п. 2.7а.1) проводят на образцах длиной не менее 1 м без брони и наружных покровов по ГОСТ 20.57.406 (метод 204-1).
После достижения в холодильной камере заданной температуры время выдержки образцов в ней должно быть не менее
45 мин — для кабелей наружным диаметром до 20 мм;
120 мин » » » » св. 20 до 40 мм;
180 мин » » » » св. 40 до 60 мм;
240 мин » » » » св. 60 мм.
После извлечения из камеры образцы выдерживают в нормальных климатических условиях в течение 1 ч, после чего они должны выдержать испытание переменным напряжением в соответствии с п. 2.5.4.
4.4.3. Испытания кабелей на влагостойкость (п. 2.7а.1) проводят по ГОСТ 20.57.406 (метод 207-1) на образцах длиной не менее 3 м при относительной влажности воздуха 95-98 % и температуре окружающей среды (35 ± 2) °С; время выдержки — не менее 48 ч. После извлечения образцов из камеры определяют электрическое сопротивление изоляции, которое должно соответствовать требованиям п. 2.5.2а.

4.4.4. Испытание на грибостойкость (п. 2.7а.2) проводят по ГОСТ 20.57.406 (метод 214-1) на неизогнутых образцах кабеля длиной не менее 0,2 мм. Степень биологического обрастания грибами не должна превышать двух баллов.
4.5. Проверка стойкости при механических воздействиях
4.5.1. Испытание на стойкость к навиванию (п. 2.6а.1) проводят на трех образцах кабеля с защитными покровами и открытыми концами при температуре от 10 до 25 °С. Длина образца должна быть не менее 1,5 м, исключая концевые разделки.
Цикл заключается в навивании образца полным витком сначала в одном направлении, затем после выпрямления — в противоположном направлении таким образом, чтобы слои, растягиваемые в первом случае, были сжимаемы во втором. Навивание и разматывание образца должно производиться плавно.
Перед испытанием на навивание образцы выдерживают в холодильной камере при температуре минус 15 °С.
После достижения в холодильной камере заданной температуры время выдержки образцов в ней должно быть не менее указанного в п. 4.4.2.
Время между выемкой образцов из холодильной камеры и началом изгибания должно быть не более 5 мин.
Образцы должны быть подвергнуты трем циклам испытания.
После навивания образцы должны выдержать испытание переменным напряжением 3 кВ номинальной частотой 50 Гц.
Время испытания — 5 мин.
Испытание напряжением образцов одножильных кабелей после навивания должно быть проведено в воде, при этом напряжение прикладывают между жилой и водой.
Защитный покров и оболочка образцов после навивания не должны иметь разрывов и трещин, видимых без применения увеличительных приборов.
4.6. Проверку маркировки и упаковки (пп. 5.1-5.3) проводят внешним осмотром.

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
5.1. Маркировка, упаковка, транспортирование и хранение должны соответствовать требованиям ГОСТ 18690 и настоящего стандарта.
5.2. На каждом барабане или ярлыке, прикрепленном к барабану или бухте, должны быть указаны
— товарный знак завода-изготовителя;
— условное обозначение кабеля;
— общая длина кабеля (число отрезков и их длина) в метрах;
— масса брутто или нетто (при поставке в бухтах) в килограммах;
— дата изготовления (год, месяц);
— номер барабана или бухты.
На ярлыке должен быть проставлен штамп технического контроля.
Транспортная маркировка должна соответствовать требованиям ГОСТ 18690 и ГОСТ 14192.
5.3. Кабели должны быть намотаны на барабаны. Допускается наматывать кабели с резиновой и поливинилхлоридной оболочкой в бухты.
Диаметр шейки барабана должен быть не менее диаметров цилиндров, указанных в п. 2.6а.1.
Внутренний диаметр бухты должен быть не менее 15 диаметров кабеля по оболочке.
Длина нижнего конца кабеля, выведенного на наружную сторону щеки барабана, должна быть не менее 0,3 м.
5.4. Условия транспортирования в части воздействия климатических факторов внешней среды должны соответствовать группе ОЖ4 по ГОСТ 15150.
5.5. Условия хранения в части воздействия климатических факторов внешней среды должны соответствовать группе ОЖ4 по ГОСТ 15150.
Допускается хранение кабелей на барабанах в обшитом виде на открытых площадках (группа хранения ОЖЗ по ГОСТ 15150). Срок хранения кабелей на открытых площадках — не более 2 лет, под навесом — не более 5 лет, в закрытых помещениях — не более 10 лет.
5а. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ
5а.1. Кабели должны быть проложены в соответствии с действующими «Правилами устройства электроустановок» (ПУЭ) и технической документацией, утвержденной в установленном порядке.
5а.2. Область применения кабелей должна соответствовать указанной в «Единых технических указаниях по выбору и применению электрических кабелей».
5а.3. Кабели могут быть проложены без предварительного подогрева при температуре не ниже минус 20 °С для кабелей в свинцовой оболочке, не ниже минус 15 °С — для кабелей с резиновой или поливинилхлоридной оболочкой и кабелей без волокнистых материалов в защитном покрове, не ниже минус 7 °С — для остальных кабелей с защитными покровами.
5а.4. Минимальный радиус изгиба при прокладке должен быть не менее 10 наружных диаметров для одножильных кабелей и не менее 7,5 наружных диаметров — для многожильных кабелей.
5а.5. Кабели после прокладки должны выдерживать испытание напряжением в соответствии с действующими правилами устройства электрических установок. На одножильных кабелях без брони испытание не проводят.
5а.6. Длительно допустимая температура нагрева жил кабелей при эксплуатации не должна превышать 70 °С, и максимально допустимая температура жил при коротком замыкании — 200 °С.
Продолжительность короткого замыкания не должна превышать 4 с.
5а.7. Кабели допускается эксплуатировать в сетях постоянного напряжения при значениях напряжения в 2,4 раза больше Uo (где Uo — напряжение между жилой и металлической оболочкой).
5а.8. Суммарное время воздействия максимально допустимой температуры при повторных коротких замыканиях не должно превышать 10 мин.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ
6.1. Изготовитель гарантирует соответствие кабелей требованиям настоящего стандарта при соблюдении условий хранения, транспортирования, монтажа и эксплуатации.
Гарантийный срок эксплуатации кабелей — три года.
Гарантийный срок исчисляют с даты ввода кабелей в эксплуатацию.
Разделы 3-6. (Измененная редакция, Изм. № 6).

ПРИЛОЖЕНИЕ
Обязательное
Коды ОКП
Таблица 1

Код ОКП
КЧ
Марка кабеля

35 2132 0300
08
Кабель ВРБ-Т

35 2132 0400
05
Кабель ВРГ-Т

35 2132 1100
10
Кабель ВРГ

35 2132 1300
04
Кабель ВРБ-Т с жилами меньшего сечения

35 2132 1400
01
Кабель ВРГ-Т с жилами меньшего сечения

35 2132 1500
09
Кабель ВРГ с жилами меньшего сечения

35 2132 2100
06
Кабель ВРБ

35 2132 2300
00
Кабель ВРБ с жилами меньшего сечения

35 2132 2400
08
Кабель ВРГз

35 2132 2500
05
Кабель ВРБз

35 2132 2600
02
Кабель ВРБГз

35 2132 2700
10
Кабель ВРБнз

35 2132 3000
05
Кабель ВРБн с жилами меньшего сечения

35 2132 3100
02
Кабель ВРБн

35 2132 4900
07
Кабель ВРБГ-Т с жилами меньшего сечения

35 2132 5000
08
Кабель ВРБГ-Т

35 2132 5100
05
Кабель ВРБГ

35 2132 5200
02
Кабель ВРБГ с жилами меньшего сечения

35 2132 5700
09
Кабель ВРГз с жилой меньшего сечения

35 2132 5800
06
Кабель ВРБз с жилой меньшего сечения

35 2132 5900
03
Кабель ВРБГз с жилами меньшего сечения

35 2132 3200
10
Кабель ВРБнз с жилой меньшего сечения

35 2133 1000
08
Кабель СРГ-Т

35 2133 1100
05
Кабель СРГ

35 2133 1200
02
Кабель СРГ-Т с жилой меньшего сечения

35 2133 1300
10
Кабель СРГ с жилой меньшего сечения

35 2133 2000
04
Кабель СРБ-Т

35 2133 2100
01
Кабель СРБ

35 2133 2200
09
Кабель СРБ-Т с жилой меньшего сечения

35 2133 2300
06
Кабель СРБ с жилой меньшего сечения

35 2133 5000
03
Кабель СРБГ-Т

35 2133 5100
00
Кабель СРБГ

35 2133 5200
08
Кабель СРБГ-Т с жилой меньшего сечения

35 2133 5300
05
Кабель СРБГ с жилой меньшего сечения

35 2134 1000
03
Кабель НРГ с жилой меньшего сечения

352134 1100
00
Кабель НРГ

35 2134 1200
08
Кабель НРГ-Т

35 2134 1300
05
Кабель НРГ-Т с жилой меньшего сечения

35 2134 2000
10
Кабель НРБ с жилой меньшего сечения

35 2134 2100
07
Кабель НРБ

35 2134 2200
04
Кабель НРБ-Т

35 2134 2300
01
Кабель НРБ-Т с жилой меньшего сечения

35 2134 5000
09
Кабель НРБГ с жилой меньшего сечения

35 2134 5100
06
Кабель НРБГ

35 2134 5200
03
Кабель НРБГ-Т

35 2134 5300
00
Кабель НРБГ-Т с жилой меньшего сечения

35 2232 0300
01
Кабель АВРБ-Т

35 2232 0400
09
Кабель АВРГ-Т

35 2232 1100
03
Кабель АВРГ

35 2232 1300
08
Кабель АВРБ-Т с жилами меньшего сечения

35 2232 1400
05
Кабель АВРГ-Т с жилами меньшего сечения

35 2232 1500
02
Кабель АВРГ с жилами меньшего сечения

35 2232 2100
10
Кабель АВРБ

35 2232 2300
04
Кабель АВРБ с жилами меньшего сечения

35 2232 3000
09
Кабель АВРБн с жилами меньшего сечения

35 2232 3100
06
Кабель АВРБн

35 2232 4900
00
Кабель АВРБГ-Т с жилами меньшего сечения

35 2232 5000
01
Кабель АВРБГ-Т

35 2232 5100
09
Кабель АВРБГ

35 2232 5200
06
Кабель АВРБГ с жилами меньшего сечения

35 2232 5300
03
Кабель АВРГз

35 2232 5400
00
Кабель АВРБз

35 2232 5500
08
Кабель АВРБГз

35 2232 5600
05
Кабель АВРБнз

35 2232 3300
00
Кабель АВРГз с жилой меньшего сечения

35 2232 3400
08
Кабель АВРБз с жилой меньшего сечения

35 2232 3500
05
Кабель АВРБГз с жилой меньшего сечения

35 2232 3600
02
Кабель АВРБнз с жилой меньшего сечения

352233 1100
09
Кабель АСРГ

35 2233 1200
06
Кабель АСРГ с жилой меньшего сечения

35 2233 1300
03
Кабель АСРГ-Т

35 2233 1400
00
Кабель АСРГ-Т с жилой меньшего сечения

35 2233 1900
07
Кабель АСРБ-Т

35 2233 2000
08
Кабель АСРБ-Т с жилой меньшего сечения

35 2233 2100
05
Кабель АСРБ

35 2233 2200
02
Кабель АСРБ с жилой меньшего сечения

35 2233 4900
06
Кабель АСРБГ-Т

35 2233 5000
07
Кабель АСРБГ-Т с жилой меньшего сечения

35 2233 5100
04
Кабель АСРБГ

35 2233 5200
01
Кабель АСРБГ с жилой меньшего сечения

35 2234 1000
07
Кабель АНРГ с жилой меньшего сечения

35 2234 1100
04
Кабель АНРГ

35 2234 1200
01
Кабель АНРГ-Т

35 2234 1300
09
Кабель АНРГ-Т с жилой меньшего сечения

35 2234 2000
03
Кабель АНРБ с жилой меньшего сечения

35 2234 2100
00
Кабель АНРБ

35 2234 2200
08
Кабель АНРБ-Т

35 2234 2300
05
Кабель АНРБ-Т с жилой меньшего сечения

35 2234 5000
02
Кабель АНРБГ с жилой меньшего сечения

35 2234 5100
10
Кабель АНРБГ

35 2234 5200
07
Кабель АНРБГ-Т

35 2234 5300
04
Кабель АНРБГ-Т с жилой меньшего сечения

35 3192 5500
04
Кабель СРГ-Т

35 3192 5600
01
Кабель СРГ

35 3192 5700
09
Кабель СРБ2лГ

35 3193 5600
07
Кабель СРГ

35 3193 5800
01
Кабель СРБГ

35 3194 5600
02
Кабель СРГ

35 3592 5300
04
Кабель АСРГ

35 3592 5400
01
Кабель АСРБ2лГ

35 3593 5300
10
Кабель АСРГ

35 3593 5500
04
Кабель АСРБГ

35 3594 5300
05
Кабель АСРГ

Таблица 2
Определение девятого, десятого знаков кода ОКП маркоразмера кабелей с жилами одинакового сечения

Девятый и десятый знаки кода ОКП
Число и номинальное сечение жил, мм2

01
1 ´ 1,0

02
1 ´ 1,5

03
1 ´ 2,5

04
1 ´ 4,0

05
1 ´ 6,0

06
1 ´ 10

07
1 ´ 16

08
1 ´ 25

09
1 ´ 35

10
1 ´ 50

11
1 ´ 70

12
1 ´ 95

13
1 ´ 120

14
1 ´ 150

15
1 ´ 185

16
1 ´ 240

17
1 ´ 300

18
1 ´ 400

19
1 ´ 500

23
2 ´ 1,0

24
2 ´ 1,5

25
2 ´ 2,5

26
2 ´ 4,0

27
2 ´ 6,0

28
2 ´ 10

29
2 ´ 16

30
2 ´ 25

31
2 ´ 35

32
2 ´ 50

33
2 ´ 70

34
2 ´ 95

35
2 ´ 120

36
2 ´ 150

37
2 ´ 185

38
2 ´ 240

39
2 ´ 300

45
3 ´ 1,0

46
3 ´ 1,5

47
3 ´ 2,5

48
3 ´ 4,0

49
3 ´ 6,0

50
3 ´ 10

51
3 ´ 16

52
3 ´ 25

53
3 ´ 35

54
3 ´ 50

55
3 ´ 70

56
3 ´ 95

57
3 ´ 120

58
3 ´ 150

59
3 ´ 185

60
3 ´ 240

61
3 ´ 300

67
4 ´ 1,0

68
4 ´ 1,5

69
4 ´ 2,5

70
4 ´ 4,0

71
4 ´ 6,0

72
4 ´ 10

73
4 ´ 16

74
4 ´ 25

75
4 ´ 35

76
4 ´ 50

77
4 ´ 70

78
4 ´ 95

79
4 ´ 120

80
4 ´ 150

81
4 ´ 185

82
4 ´ 240

83
4 ´ 300

Таблица 3
Определение девятого, десятого знаков кода ОКП маркоразмера кабелей с жилами меньшего сечения

Девятый и десятый знаки кода ОКП
Число и номинальное сечение жил, мм2

01
2 ´ 1,5 + 1 ´ 1,0

02
2 ´ 2,5 + 1 ´ 1,5

03
2 ´ 4,0 + 1 ´ 2,5

04
2 ´ 6,0 + 1 ´ 2,5

05
2 ´ 6,0 + 1 ´ 4,0

06
2 ´ 10 + 1 ´ 4,0

07
2 ´ 10 + 1 ´ 6,0

08
2 ´ 16 + 1 ´ 6,0

09
2 ´ 16 + 1 ´ 10

10
2 ´ 25 + 1 ´ 10

11
2 ´ 25 + 1 ´ 16

12
2 ´ 35 + 1 ´ 16

13
2 ´ 50 + 1 ´ 16

14
2 ´ 50 + 1 ´ 25

15
2 ´ 70 + 1 ´ 25

16
2 ´ 70 + 1 ´ 35

17
2 ´ 95 + 1 ´ 35

18
2 ´ 95 + 1 ´ 50

19
2 ´ 120 + 1 ´ 95

20
2 ´ 120 + 1 ´ 70

21
2 ´ 150 + 1 ´ 50

22
2 ´ 150 + 1 ´ 70

23
2 ´ 185 + 1 ´ 50

24
2 ´ 185 + 1 ´ 95

25
2 ´ 240 + 1 ´ 70

55
3 ´ 150 + 1 ´ 50

56
3 ´ 150 + 1 ´ 95

57
3 ´ 185 + 1 ´ 50

58
3 ´ 185 + 1 ´ 95

26
2 ´ 240 + 1 ´ 120

27
2 ´ 300 + 1 ´ 95

28
2 ´ 300 + 1 ´ 150

35
3 ´ 1,5 + 1 ´ 1,5

36
3 ´ 2,5 + 1 ´ 1,5

37
3 ´ 4,0 + 1 ´ 2,5

38
3 ´ 6,0 + 1 ´ 2,5

39
3 ´ 6,0 + 1 ´ 4,0

40
3 ´ 10 + 1 ´ 4,0

41
3 ´ 10 + 1 ´ 6,0

42
3 ´ 16 + 1 ´ 6,0

43
3 ´ 16 + 1 ´ 10

44
3 ´ 25 + 1 ´ 10

45
3 ´ 25 + 1 ´ 16

46
3 ´ 35 + 1 ´ 16

47
3 ´ 50 + 1 ´ 16

48
3 ´ 50 + 1 ´ 25

49
3 ´ 70 + 1 ´ 25

50
3 ´ 70 + 1 ´ 35

51
3 ´ 95 + 1 ´ 35

52
3 ´ 95 + 1 ´ 50

53
3 ´ 120 + 1 ´ 35

54
3 ´ 120 + 1 ´ 70

55
3 ´ 150 + 1 ´ 50

59
3 ´ 240 + 1 ´ 70

60
3 ´ 240 + 1 ´ 120

61
3 ´ 300 + 1 ´ 95

62
3 ´ 300 + 1 ´ 150

Примечание. Десятичный код ОКП маркоразмера составляется из восьми первых знаков кода марки по перечню позиций (табл. 1) и двух знаков (девятого и десятого), приведенных в табл. 2 или 3.
Пример 1. Код ОКП трехжильного кабеля с жилами равного сечения марки ВРГ сечением 4 мм2 — 35 2132 1148, где 35 2132 11 — код марки кабеля марки ВРГ из перечня позиций по табл. 1, а 48 — девятый и десятый знаки кода ОКП по табл. 2.
Пример 2. Код ОКП трехжильного кабеля марки ВРГ сечением 4 мм2 с жилой меньшего сечения 2,5 мм (ВРГ 2 ´ 4 + 1 ´ 2,5 мм ) — 35 2132 1503, где 35 2132 15 — код марки кабеля марки ВРГ из перечня позиций по табл. 1, а 03 — девятый и десятый знаки кода ОКП по табл. 3.
(Измененная редакция, Изм. № 5, 6).

ГОСТ 1983-2001
УДК 621.314.222 006.354 Е64
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ
Общие технические условия

Voltage transformers.
General specifications
МКС 17.220.20
ОКП 341450
Дата введения 2003—01—01
Предисловие
1 РАЗРАБОТАН Открытым акционерным обществом ОАО «Свердловский завод трансформаторов тока»
ВНЕСЕН Госстандартом России
2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 20 от 1 ноября 2001 г.)
За принятие проголосовали

Наименование государства
Наименование национального органа по стандартизации

Азербайджанская Республика
Азгосстандарт

Республика Армения
Армгосстандарт

Республика Беларусь
Госстандарт Республики Беларусь

Республика Казахстан
Госстандарт Республики Казахстан

Кыргызская Республика
Кыргызстандарт

Республика Молдова
Молдовастандарт

Российская Федерация
Госстандарт России

Республика Таджикистан
Таджикстандарт

Туркменистан
Главгосслужба «Туркменстандартлары»

Республика Узбекистан
Узгосстандарт

Украина
Госстандарт Украины

3 Настоящий стандарт соответствует международным стандартам МЭК 60044-2 1997 «Измерительные трансформаторы. Часть 2. Индуктивные трансформаторы напряжения» в части электромагнитных трансформаторов напряжения и МЭК 186—87 «Трансформаторы напряжения» в части емкостных трансформаторов напряжения
4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 13 марта 2002 г. № 91-ст межгосударственный стандарт ГОСТ 1983—2001 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2003 г.
5 ВЗАМЕН ГОСТ 1983-89

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий стандарт распространяется на электромагнитные и емкостные трансформаторы напряжения (далее — трансформаторы), предназначенные для применения в электрических цепях переменного тока частотой 50 или 60 Гц с номинальными напряжениями от 0,38 до 750 кВ включительно с целью передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления.
Дополнительные требования к отдельным видам трансформаторов в связи со спецификой их конструкции или назначения (например к антирезонансным трансформаторам, предназначенным для установки в комплектных распределительных устройствах (КРУ), пофазно экранированных токопроводах) устанавливают в стандартах, технических условиях, договорах или контрактах (далее — стандартах) на трансформаторы конкретных типов.
Стандарт не распространяется на лабораторные трансформаторы.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ 2.601—95 Единая система конструкторской документации. Эксплуатационные документы
ГОСТ 8.216—88 Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки
ГОСТ 12.2.007.0—75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности
ГОСТ 12.2.007.3—75 Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности
ГОСТ 12.3.019—80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности
ГОСТ 15.001—881) Система разработки и постановки продукции на производство. Продукция производственно-технического назначения
ГОСТ 15.309—98 Система разработки и постановки продукции на производство. Испытания и приемка выпускаемой продукции. Основные положения
ГОСТ 27.003—90 Надежность в технике. Состав и общие правила задания требований по надежности
ГОСТ 721—77 Системы электроснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В
ГОСТ 1516.1—76 Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции
ГОСТ 1516.2—97 Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции
ГОСТ 1516.3—96 Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции
ГОСТ 3484.1—88 Трансформаторы силовые. Методы электромагнитных испытаний
ГОСТ 3484.2—88 Трансформаторы силовые. Испытания на нагрев
ГОСТ 3484.5—88 Трансформаторы силовые. Испытания баков на герметичность
ГОСТ 6581—75 Материалы электроизоляционные жидкие. Методы электрических испытаний
ГОСТ 8865—93 Системы электрической изоляции. Оценка нагревостойкости и классификация
ГОСТ 9920—89 (МЭК 694—80, МЭК 815—86) Электроустановки переменного тока на напряжение от 3 до 750 кВ. Длина пути утечки внешней изоляции
ГОСТ 10434—82 Соединения контактные электрические. Классификация. Общие технические требования
ГОСТ 13109—97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения
ГОСТ 14192—96 Маркировка грузов
ГОСТ 15150—69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15543.1—89 Изделия электротехнические. Общие требования в части стойкости к климатическим внешним воздействующим факторам
ГОСТ 16504—81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения
ГОСТ 16962.1—89 (МЭК 68—2—1—74) Изделия электротехнические. Методы испытаний на устойчивость к климатическим внешним воздействующим факторам
ГОСТ 16962.2—90 Изделия электротехнические. Методы испытаний на стойкость к механическим внешним воздействующим факторам
ГОСТ 17516.1—90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам
ГОСТ 18425—73 Тара транспортная наполненная. Метод испытания на удар при свободном падении
ГОСТ 18685—73 Трансформаторы тока и напряжения. Термины и определения
ГОСТ 19880—74 Электротехника. Основные понятия. Термины и определения
ГОСТ 20074—83 Электрооборудование и электроустановки. Метод измерения характеристик частичных разрядов
ГОСТ 20690—75 Электрооборудование переменного тока на напряжение 750 кВ. Требования к электрической прочности изоляции
ГОСТ 21130—75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры
ГОСТ 22756—77 (МЭК 722—86) Трансформаторы (силовые и напряжения) и реакторы. Методы испытаний электрической прочности изоляции
ГОСТ 23216—78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний
РМГ 29—99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения
3 Определения
Термины, применяемые в настоящем стандарте, и соответствующие им определения — по ГОСТ 3484.1, ГОСТ 16504, ГОСТ 18685, ГОСТ 19880, РМГ 29, а также следующие
3.1 антирезонансный трансформатор Трансформатор, устойчиво работающий при наличии в сети феррорезонансных явлений.
3.2 трехфазная группа однофазных трансформаторов Группа из трех однофазных трансформаторов, установленных на общей раме (площадке) и электрически соединенных между собой по определенной схеме.
3.3 номинальный коэффициент напряжения Коэффициент, на который следует умножать номинальное первичное напряжение, чтобы найти максимальное напряжение, при котором трансформатор соответствует требованиям по нагреву в течение установленного времени.
3.4 испытание для утверждения типа Вид государственного метрологического контроля вновь разработанного трансформатора, проводимого в целях обеспечения единства измерений, утверждения типа трансформатора и занесения его в Государственный реестр средств измерений.
3.5 испытание на соответствие утвержденному типу Вид государственного метрологического контроля, проводимого периодически в целях определения соответствия выпускаемых из производства трансформаторов утвержденному типу.
4 Классификация
4.1 Трансформаторы подразделяют по следующим основным признакам.
4.1.1 По роду установки (категории размещения и климатическому исполнению) по ГОСТ 15150.
При размещении трансформаторов внутри оболочек комплектных изделий категории размещения должны соответствовать указанным в таблице 1.
Таблица 1 — Категории размещения трансформаторов, установленных внутри оболочек комплектных изделий

Характеристика среды внутри оболочки
Категория размещения по ГОСТ 15150

1
2
3
4
5

1 Газовая среда, изолированная от наружного воздуха, или жидкая среда


4

2 Газовая среда, не изолированная от наружного воздуха
2
2 или 2.1
3
4
5 или 5.1

4.1.2 По числу фаз.
4.1.3 По наличию или отсутствию заземления вывода X первичной обмотки.
4.1.4 По принципу действия.
4.1.5 По числу ступеней трансформации.
4.1.6 По наличию компенсационной обмотки или обмотки для контроля изоляции сети.
4.1.7 По виду изоляции.
4.1.8 По особенностям конструктивного исполнения.
Основные признаки трансформаторов и их обозначения приведены в таблицах 2 и 3.
4.2 Трехобмоточный трансформатор следует изготовлять с двумя вторичными обмотками основной и дополнительной.
По требованию потребителя допускается изготовление трехобмоточных трансформаторов с двумя основными вторичными обмотками.
Таблица 2

Конструктивное исполнение трансформаторов
Условное обозначение

Заземляемый
З

Незаземляемый

Однофазный
О

Трехфазный
Т

Электромагнитный

Электромагнитный каскадный
К

С емкостным делителем
ДЕ

Двухобмоточный

Трехобмоточный

Трехфазный с дополнительными обмотками для контроля изоляции сети
И

Трехфазный с компенсационными обмотками
к

Защищенное исполнение
з

Водозащищенное исполнение
в

Герметичное исполнение
г

С встроенным предохранителем
п

Антирезонансная конструкция
А

Таблица 3

Вид изоляции
Условное обозначение

Воздушно-бумажная
С

Литая
Л

Залитая битумным компаундом
к

С фарфоровой покрышкой
ф

Масляная
м

Газовая
г

5 Основные параметры
5.1 Трансформаторам, предназначенным для измерения, следует присваивать классы точности, выбираемые из ряда 0,1; 0,2; 0,5; 1,0; 3,0.
Трансформаторам, предназначенным для защиты1), следует присваивать классы точности 3Р или 6Р.
1) Здесь и далее под словом «защита» подразумевается защита, управление, автоматика, сигнализация.
Трансформаторам присваивают один или несколько классов точности в зависимости от номинальных мощностей и назначения.
Конкретные классы точности следует устанавливать в стандартах на трансформаторы конкретных типов.
Примечание — Для трехфазных трехобмоточных трансформаторов классы точности устанавливают только для основной вторичной обмотки. Для однофазных трехобмоточных трансформаторов классы точности устанавливают для обеих вторичных обмоток, причем для дополнительной вторичной обмотки класс точности должен быть 3, 3Р или 6Р.
5.2 Номинальные мощности трансформаторов для любого класса точности следует выбирать из ряда 10; 15; 25; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 800; 1000; 1200 В×А2). Значения номинальных мощностей для низших классов точности трансформаторов определяют в соответствии с приложением А.
_________________
2) По согласованию с потребителем допускается изготовление трансформаторов с номинальными мощностями 20 и 45 В×А.
Конкретные значения номинальных мощностей для всех классов точности устанавливают в стандартах на трансформаторы конкретных типов.
5.3 Предельные мощности трансформаторов следует выбирать из ряда 160; 250; 400; 630; 1000; 1600; 2000; 2500 В×А.
Конкретные значения предельных мощностей следует устанавливать в стандартах на трансформаторы конкретных типов.
5.4 За номинальные и предельные мощности трехобмоточных трансформаторов принимают суммарные мощности основной и дополнительной вторичных обмоток.
При нагрузке однофазного трехобмоточного трансформатора до предельной мощности, основная вторичная обмотка должна быть нагружена до мощности, равной разности предельной мощности и номинальной мощности дополнительной вторичной обмотки.
Для трехфазных трансформаторов за номинальные и предельные мощности принимают трехфазные мощности.
Для трехобмоточных трансформаторов с включенными нагрузками на обеих вторичных обмотках, работающих одновременно, распределение мощности нагрузки между обмотками следует устанавливать в стандартах на трансформаторы конкретных типов.
5.5 Номинальные напряжения первичных обмоток однофазных трансформаторов, включаемых между фазами, и трехфазных трансформаторов на напряжение до 1000 В должны быть 380 или 660 В.
Номинальные напряжения первичных обмоток трансформаторов на напряжение более 1000 В должны соответствовать указанным в таблице 4.
Значения напряжения следует указывать в стандартах на трансформаторы конкретных типов.

Таблица 4
В киловольтах

Класс напряжения по ГОСТ 1516.1 и ГОСТ 1516.3
Номинальное напряжение первичной обмотки для трансформаторов

однофазных незаземляемых, включаемых между фазами
однофазных заземляемых, включаемых между фазой и землей
трехфазных

3
3

3

3
3,151)

6
6

6

6
6

6,61)

10
10

10

10
10,51)

10,51)

10
111)

11,01)

15
13,81)

15
15

15
15,751)

20
181)

20
201)

24

27

35
35

35

110

150

220

330

500

750

1) Только для трансформаторов, присоединяемых непосредственно к шинам генераторного напряжения электрических станций или к выводам генераторов; и также для собственных нужд подстанций.
5.6 Номинальные напряжения основных вторичных обмоток должны быть 100 В для однофазных трансформаторов, включаемых на напряжение между фазами, и В — для однофазных трансформаторов, включаемых на напряжение между фазой и землей; для трансформаторов, предназначенных для экспорта, — соответственно 110 или В, 120 или В.
Примечание — По требованию потребителя допускается изготавливать трансформаторы с напряжением основных вторичных обмоток 200 или В, 220 или В.
5.7 Номинальные напряжения дополнительных вторичных обмоток должны быть
100 В — для однофазных трансформаторов, работающих в сетях с заземленной нейтралью;
100/3 В — для однофазных трансформаторов, работающих в сетях с изолированной нейтралью;
для трансформаторов, предназначенных для экспорта, — соответственно 110 или 110/3 В, 120 или 120/3 В.
Примечание — По требованию потребителя допускается изготавливать трансформаторы с напряжением дополнительных вторичных обмоток соответственно 200 или 200/3 В, 220 или 220/3 В.
5.8 Номинальное вторичное напряжение трехфазных трансформаторов должно быть 100 В, а для трансформаторов, предназначенных для экспорта, — 110 В.
5.9 Номинальная частота напряжения питающей сети должна быть 50 или 60 Гц. Качество напряжения — по ГОСТ 13109.
5.10 Схемы и группы соединений первичных и вторичных обмоток трансформаторов должны соответствовать указанным в таблицах 5—12.
Примечание — В технической документации допускаются обозначения У вместо , Ун вместо , V вместо и Z вместо .
Таблица 5 — Схемы и группы соединений обмоток однофазных двухобмоточных трансформаторов

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное обозначение

первичной
вторичной
первичной
вторичной

А Х
а х
1/1-0

Таблица 6 — Схемы и группы соединений обмоток однофазных трехобмоточных трансформаторов с двумя основными вторичными обмотками

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное

первичной
вторичной основной 1
вторичной основной 2
первичной
вторичной основной 1
вторичной основной 2
обозначение

А Х
а1 х1
а2 х2
1/1/1-0-0

Таблица 7 — Схемы и группы соединений обмоток однофазных трехобмоточных трансформаторов с основной и дополнительной вторичными обмотками

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное обозначение

первичной
вторичной основной
вторичной дополнительной
первичной
вторичной основной
вторичной дополнительной

А Х
а х
ад хд
1/1/1-0-0

Таблица 8 — Схемы и группы соединений обмоток трехфазных двухобмоточных трансформаторов

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное обозначение

первичной
вторичной
первичной
вторичной

Таблица 9 — Схемы и группы соединений обмоток трехфазных двухобмоточных трансформаторов с положительной компенсацией1) угловой погрешности

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное обозначение

первичной
вторичной
первичной
вторичной

1) Положительная компенсация угловой погрешности трансформатора — поворот вектора первичного фазного напряжения относительно вектора вторичного фазного напряжения по направлению движения часовой стрелки на некоторый угол.
Таблица 10 — Схема и группа соединений обмоток трехфазных двухобмоточных трансформаторов с отрицательной компенсацией1) угловой погрешности

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное обозначение

первичной
вторичной
первичной
вторичной

1) Отрицательная компенсация угловой погрешности трансформатора — поворот вектора первичного фазного напряжения относительно вектора вторичного фазного напряжения против направления движения часовой стрелки на некоторый угол.

Таблица 11 — Схемы и группы соединений обмоток трехфазных трехобмоточных трансформаторов с основной и дополнительной вторичными обмотками

Схема соединения
Диаграмма векторов ЭДС обмотки
Замыкаемая
Условное

обмотки
первичной
вторичной
вторичной дополнительной
фаза
обозначение

первичной
вторичной основной
вторичной дополнительной

основной
при нормальной работе системы
при замыкании фазы на землю в системе с изолированной нейтралью

А В С

В А С

Таблица 12 — Схемы и группы соединений обмоток трехфазных трехобмоточных трансформаторов с двумя основными вторичными обмотками

Схема соединения обмотки
Диаграмма векторов ЭДС обмотки
Условное обозначение

первичной
вторичной основной 1
вторичной основной 2
первичной
вторичной основной 1
вторичной основной 2

5.11 Условное обозначение трансформатора

Х
Н
Х
Х
Х
Х —
Х
Х
ХХ

Климатическое исполнение и категория

размещения по ГОСТ 15150

Категория в зависимости от длины пути

утечки внешней изоляции по ГОСТ 9920

Класс напряжения первичной обмотки

для основного типоисполнения, кВ

Другие конструктивные

признаки

Вид

изоляции

Конструктивный признак,

характеризующий принцип действия

Конструктивный признак,

характеризующий число фаз

Целевое назначение

(трансформатор напряжения)

Заземляемый трансформатор

Примечания
1 В стандартах на трансформаторы конкретных типов в обозначении допускается применять дополнительные или исключать отдельные данные.
2 Левая буквенная часть обозначения представляет серию, совокупность буквенной и цифровой частей — тип.
3 Для трансформаторов ниже 1000 В вместо класса напряжения указывают номинальное напряжение первичной обмотки в киловольтах.
Пример условного обозначения трансформатора напряжения заземляемого, однофазного, электромагнитного, с литой изоляцией, со встроенным предохранителем, класса напряжения 10 кВ, климатического исполнения Т, категории размещения 3 по ГОСТ 15150
ЗНОЛП — 10Т3
То же, антирезонансной конструкции, масляного трехфазного с дополнительными обмотками для контроля изоляции сети, класса напряжения 10 кВ, климатического исполнения У, категории размещения 2 по ГОСТ 15150
НАМИ — 10У2

6 Технические требования
6.1 Трансформаторы следует изготовлять в соответствии с требованиями настоящего стандарта, стандартов на трансформаторы конкретных типов по рабочим чертежам, утвержденным в установленном порядке.
6.2 В трехобмоточном трансформаторе основная вторичная обмотка предназначена для питания измерительных приборов и цепей защитных устройств, дополнительная вторичная обмотка — для питания цепей защитных устройств и контроля изоляции сети.
6.3 Однофазные трансформаторы должны быть рассчитаны для работы в электрических схемах согласно рисункам Б.1, Б.2, Б.6 — Б.10 приложения Б.
6.4 В трехфазных трехобмоточных трансформаторах, включенных по схеме согласно рисунку Б.4, и однофазных трехобмоточных трансформаторах, включенных по схеме согласно рисунку Б.8 приложения Б, напряжение на вводах разомкнутого треугольника при симметричном номинальном первичном фазном напряжении не должно превышать 3 В.
6.5 К каждой дополнительной вторичной обмотке группы однофазных трехобмоточных трансформаторов, соединенных по схемам, изображенным на рисунках Б.9 и Б.10 приложения Б, допускается подключать фазные нагрузки S2 (рисунок 1).
Сумма мощности фазной нагрузки S2 и общей нагрузки разомкнутого треугольника SD при равенстве cos j не должна превышать мощности дополнительной вторичной обмотки трансформатора Sдоп (за расчетную схему принимается двухфазное короткое замыкание на землю)
S2 + SD £ Sдоп (1)

Рисунок 1
6.6 Трехфазные трансформаторы, а также трехфазные группы однофазных трансформаторов, предназначенные для контроля изоляции в сетях с изолированной нейтралью, должны выдерживать не менее 8 ч однофазные замыкания сети на землю при наибольшем рабочем напряжении, соответствующем ГОСТ 721.
Однофазные трансформаторы должны выдерживать напряжения в соответствии с таблицей 13.
Таблица 13

Номинальный коэффициент напряжения
Продолжительность включения
Способ включения первичной обмотки и условия заземления системы

1,2
Неограниченная
Между фазами любой сети. Между нейтральной точкой трансформатора и землей в любой сети

1,5
30 с
Между фазой и землей в системе с эффективно заземленной нейтралью

1,9
30 с
Между фазой и землей в системе с неэффективно заземленной нейтралью с автоматическим отключением при замыкании на землю

1,9
8 ч
Между фазой и землей в системе с изолированной нейтралью без автоматического отключения при замыкании на землю или в резонансно-заземленной системе без автоматического отключения при замыкании на землю

6.7 Напряжения на вводах разомкнутого треугольника дополнительных вторичных обмоток трехобмоточных трансформаторов должно быть от 90 до 110 В при приложенном к ним симметричном линейном напряжении, соответствующем номинальному первичному напряжению, и последующем замыкании одной из фаз на землю.
Примечание — Указанные значения напряжений относятся к трансформаторам с номинальным вторичным напряжением 100 В. Для трансформаторов с номинальным вторичным напряжением 110 и 200 В значения напряжений следует указывать в стандартах на эти трансформаторы.
6.8 Требования по устойчивости к внешним воздействиям окружающей среды
6.8.1 Трансформаторы следует изготавливать в климатических исполнениях по ГОСТ 15150 и ГОСТ 15543.1. Категория размещения — по ГОСТ 15150.
Вид климатического исполнения и категорию размещения следует указывать в стандартах на трансформаторы конкретных типов.
Для трансформаторов категории размещения 4 по ГОСТ 15150 климатическое исполнение — УХЛ4 или О4.
Требования в части стойкости к климатическим внешним воздействующим факторам — по ГОСТ 15543.1.
6.8.2 Трансформаторы должны быть предназначены для работы на высоте до 1000 м над уровнем моря, за исключением трансформаторов на номинальное напряжение 750 кВ, которые должны быть предназначены для работы на высоте до 500 м.
Допускается по согласованию между потребителем и изготовителем изготавливать трансформаторы для работы на высоте свыше 1000 м.
6.8.3 Устойчивость трансформаторов к воздействию механических факторов внешней среды — по ГОСТ 17516.1. Группу механического исполнения по ГОСТ 17516.1 устанавливают в стандартах на трансформаторы конкретных типов.
Трансформаторы категории размещения 1 должны быть рассчитаны на суммарную механическую нагрузку от ветра скоростью 40 м/с, гололеда с толщиной стенки льда 20 мм и от тяжения проводов не менее
500 Н (50 кгс) — для трансформаторов на номинальное напряжение до 35 кВ включительно;
1000 Н (100 кгс) — для трансформаторов на номинальное напряжение от 110 до 220 кВ;
1500 Н (150 кгс) — для трансформаторов на номинальное напряжение 330 кВ и выше.
6.8.4 Рабочее положение трансформаторов в пространстве должно быть указано в стандартах на трансформаторы конкретных типов.
6.9 Требования к конструкции
6.9.1 Вводы и контактные выводы
6.9.1.1 Расположение вводов масляных трансформаторов и контактных выводов сухих трансформаторов следует указывать в стандартах на трансформаторы конкретных типов.
6.9.1.2 Контактные выводы следует выполнять по ГОСТ 10434.
6.9.1.3 У трансформаторов с первичным напряжением 35 кВ и выше вводы вторичных обмоток и заземляемые вводы первичной обмотки должны быть с контактным резьбовым соединением диаметром не менее М6.
6.9.1.4 У трансформаторов категории размещения 1 по ГОСТ 15150 длина пути утечки внешней изоляции по ГОСТ 9920 должна быть установлена в стандартах на трансформаторы конкретных типов.
У трансформаторов категорий размещения 2 и 5 по ГОСТ 15150 длина пути утечки внешней изоляции с учетом выпадения росы и инея должна быть установлена в стандартах на трансформаторы конкретных типов.
6.9.1.5 Плоский контактный зажим ввода первичного напряжения трансформатора, предназначенный для соединения с шинами экранированного токопровода, должен позволять регулирование его высоты по отношению к вводу не менее 10 мм.
6.9.1.6 Конструкцией трансформаторов категории размещения 1 по ГОСТ 15150 должна быть обеспечена защита места присоединения кабелей к выводам вторичных обмоток от атмосферных осадков.
6.9.2 Баки (фарфоровые покрышки) и расширители
6.9.2.1 Конструкция маслонаполненных трансформаторов должна обеспечивать их герметичность. Стандарты на маслонаполненные трансформаторы должны содержать требования по проверке герметичности конструкции, а также требования к газо- и влагосодержанию заливаемого в трансформаторы масла.
6.9.2.2 Маслонаполненный трансформатор должен иметь расширитель, вместимость которого обеспечивает постоянное наличие в нем масла при всех режимах работы трансформатора в диапазоне рабочих температур. Функцию расширителя могут выполнять верхняя часть фарфоровой покрышки, сильфон или другие устройства.
6.9.2.3 Маслонаполненные трансформаторы должны иметь указатели уровня масла. Около указателя уровня масла или на нем должны быть нанесены три контрольные черты, соответствующие уровню масла в неработающем трансформаторе при температуре 20 °С, а также при верхнем и нижнем значениях температуры. Допускается применять другие устройства контроля уровня масла.
6.9.2.4 В трансформаторах с массой масла до 50 кг допускается наносить на указателе уровня масла одну контрольную черту, по которой устанавливают уровень заливаемого в трансформатор масла при температуре 20 °С.
6.9.2.5 В герметичных трансформаторах способы контроля уровня масла должны быть указаны в стандартах на эти трансформаторы.
6.9.2.6 Трансформаторы с массой масла менее 20 кг, соответствующие требованиям 6.9.2.2, допускается изготавливать без указателей уровня масла.
6.9.2.7 Конструкция газонаполненных трансформаторов должна иметь защиту от чрезмерного увеличения давления газа при аварии, связанной с пробоем внутренней изоляции и горением дуги.
6.9.2.8 Конструкция газонаполненных трансформаторов должна обеспечивать утечку массы газа не более 1 % в год.
6.9.3 Арматура
6.9.3.1 Масляные трансформаторы с первичным напряжением 10 кВ и выше и массой масла более 10 кг должны быть снабжены арматурой для заливки, отбора проб и слива масла.
6.9.3.2 Арматуру для отбора проб масла помещают в нижней части бака, при этом должно быть предусмотрено плавное регулирование вытекающей струи масла.
6.9.3.3 На трансформаторах, конструкцией которых предусмотрена разборка, должно быть место для нанесения поверительного клейма или пломбы. Клеймо или пломба должны препятствовать разборке трансформатора без их нарушения.
6.9.3.4 Трансформаторы с массой более 20 кг должны иметь устройство по ГОСТ 12.2.007.0 для подъема, опускания и удержания их на весу. При невозможности конструктивного выполнения таких приспособлений в руководстве по эксплуатации следует указывать места захвата трансформатора при такелажных работах.
6.9.4 Заземление
6.9.4.1 Трансформаторы с первичным напряжением до 660 В включительно должны быть оснащены заземляющими зажимами с резьбовым соединением шпилек, болтов, винтов диаметром не менее М6, трансформаторы на номинальное напряжение свыше 660 В — не менее М8. Конструкция и размеры заземляющих зажимов — по ГОСТ 21130.
6.9.4.2 Около заземляющего зажима должен быть нанесен знак заземления по ГОСТ 21130. Способ нанесения знака заземления должен обеспечивать его долговечность и стойкость к атмосферным воздействиям.
6.9.4.3 Поверхность площадки заземляющего зажима (бобышка, прилив) должна соответствовать требованиям ГОСТ 21130. Размеры поверхности площадки должны быть достаточными для надежного соединения с шиной шириной не менее 20 мм — для трансформаторов с первичным напряжением 3 — 35 кВ и шириной не менее 40 мм — для трансформаторов с первичным напряжением 110 кВ и выше.
Примечание — Для малогабаритных трансформаторов с первичным напряжением до 660 В допускается уменьшать площадки заземления до размеров, позволяющих надежно соединять их с заземляющей жилой диаметром не менее 2 мм.
6.9.4.4 Трансформаторы с литой изоляцией, не имеющие металлического корпуса, допускается изготавливать без заземляющих зажимов.
6.9.5 Защита масла и поверхностей трансформатора
6.9.5.1 Масляные трансформаторы с первичным напряжением 110 кВ и выше должны быть оборудованы защитой, предохраняющей масло от непосредственного соприкосновения с окружающим воздухом.
6.9.5.2 Все непосредственно соприкасающиеся с окружающим воздухом, подверженные коррозии поверхности трансформатора должны быть защищены лакокрасочными, гальваническими и другими покрытиями.
6.9.5.3 Металлические поверхности внутри бака или расширителя масляного трансформатора должны иметь маслостойкое покрытие, защищающее масло от соприкосновения с ними и не оказывающее вредного воздействия на масло.
Примечание — Допускается не защищать покрытием торцевые поверхности магнитопроводов и поверхности материалов, не оказывающих активного каталитического воздействия на масло.
6.10 Применяемые в конструкции трансформаторов материалы должны обеспечивать выполнение требований по взрыво- и пожаробезопасности
Марку масла указывают в стандартах на трансформаторы конкретных типов.
6.11 Требования к нагреву
6.11.1 Превышение элементами трансформаторов температуры окружающей среды не должно быть более значений, указанных в таблице 14.
Таблица 14

Элемент трансформатора
Класс нагревостойкости по ГОСТ 8865
Превышение температуры при номинальном напряжении, протекании тока, соответствующего предельной мощности трансформатора, и эффективной температуре окружающего воздуха 40 °С
Метод измерения

Обмотки, погруженные в масло
Все классы
65
По изменению сопротивления обмоток постоянному току

Обмотки, залитые эпоксидным компаундом
В
85
То же

Обмотки, залитые битумным компаундом
Все классы
50
»

Обмотки сухих
А
60
»

трансформаторов
Е
75

В
85

F
110

Н
135

Масло в верхних слоях

По термометру или термопаре

исполнение герметичное или с устройством, полностью защищающим масло от соприкасания с окружающим воздухом

60

в остальных случаях

55
То же

Примечания
1 Указанные требования не распространяются на трансформаторы, размещаемые с внешней стороны пофазно экранированных токопроводов, но обязательны для вводов, находящихся внутри токопроводов.
2 Вместо эффективной температуры окружающей среды допускается принимать верхнее значение температуры.
6.11.2 Для трансформаторов, эксплуатируемых при температуре окружающего воздуха выше 40 °С, допускаемые значения превышения температуры, указанные в таблице 14, должны быть уменьшены на разность между температурой окружающего воздуха при эксплуатации и при 40 °С. При температуре эксплуатации ниже 40 °С допускаемые значения превышения температуры соответственно увеличиваются.
6.11.3 Классы нагревостойкости изоляции обмоток сухих трансформаторов должны быть указаны в стандартах на трансформаторы конкретных типов.
6.11.4 Превышения температуры элементов однофазных трансформаторов, указанные в таблице 14, могут быть на 10 °С выше при номинальных коэффициентах напряжения 1,5 и 1,9 (таблица 13) и значении мощности, установленном в стандартах на трансформаторы конкретных типов.
6.12 Требования к изоляции
6.12.1 Требования к электрической прочности изоляции трансформаторов с номинальными первичными напряжениями 3 — 500 кВ — по ГОСТ 1516.1 и ГОСТ 1516.3, а с номинальным первичным напряжением 750 кВ — по ГОСТ 1516.3 и ГОСТ 20690.
Заземляемые нейтрали первичных обмоток трехфазных трансформаторов, а также предназначенные для заземления вводы первичных обмоток однофазных трансформаторов могут иметь неполную изоляцию, которая должна выдерживать в течение 1 мин испытательное напряжение 3 кВ частотой 50 Гц, приложенное от внешнего источника.
Изоляция вторичных обмоток трансформаторов должна выдерживать в течение 1 мин испытательное напряжение 3 кВ частотой 50 Гц, приложенное от внешнего источника.
6.12.2 Трансформаторы, изготавливаемые с номинальными первичными напряжениями, отличающимися от указанных в таблице 4, значения которых не превышают или равны наибольшему рабочему напряжению соответствующего класса напряжения, указанного в ГОСТ 1516.1 и ГОСТ 1516.3, должны иметь уровень изоляции по ГОСТ 1516.1, ГОСТ 1516.3 или ГОСТ 20690 для напряжения данного класса.
6.12.3 Изоляция первичных обмоток трансформаторов с номинальным первичным напряжением до 660 В включительно должна выдерживать одноминутное испытательное напряжение 3 кВ частотой 50 Гц, приложенное от внешнего источника.
6.12.4 Требования к электрической прочности изоляции емкостных делителей напряжения, изолирующих подставок и электромагнитных устройств для емкостных трансформаторов должны быть указаны в стандартах на эти трансформаторы.
6.12.5 Уровень частичных разрядов изоляции электромагнитных трансформаторов на номинальное напряжение 3 кВ и выше уровня изоляции «а» по ГОСТ 1516.3 должен соответствовать значениям, приведенным в таблице 15.
Таблица 15

Условие заземления системы
Соединение первичной обмотки
Напряжение измерения частичных разрядов
Допускаемый уровень частичных разрядов, пКл, для изоляции

жидкой
газовой
твердой

Эффективно
Фаза — земля
Uн.р

20
50

заземленная нейтраль

1,1
10
10
20

Фаза — фаза
1,1×Uн.р

10
20

Неэффективно
Фаза — земля
Uн.р

20
50

заземленная или изолированная

1,1
10
10
20

нейтраль
Фаза — фаза
1,1×Uн.р

10
20

Примечание — Uн.р — наибольшее рабочее напряжение.
Требования, предъявляемые к маслонаполненным трансформаторам на номинальное напряжение 110 кВ и выше по тангенсу угла диэлектрических потерь, должны быть указаны в стандартах на трансформаторы конкретных типов.
6.12.6 При нормальных климатических условиях по ГОСТ 15150 сопротивление изоляции первичных обмоток должно быть не менее 300 МОм, вторичных обмоток — не менее 50 МОм, связующих обмоток каскадных трансформаторов — не менее 1 МОм.
6.12.7 Диэлектрические показатели качества масла маслонаполненных трансформаторов должны соответствовать указанным в таблице 16.

Таблица 16

Показатель качества масла
Номинальное напряжение трансформаторов, кВ
Предельно допустимое значение показателя качества масла

для заливки в трансформатор
после заливки в трансформатор

Пробивное
До 15 включ.
30
25

напряжение по ГОСТ
До 35 включ.
35
30

6581, кВ, не менее
110-150
60
55

220-500
65
60

750
70
65

Тангенс угла диэлектрических потерь
До 220 включ.
1,7
2,0

при 90 °С по ГОСТ 6581, %, не более
Св. 220
0,5
0,7

6.12.8 Газовая изоляция первичной обмотки трансформаторов, работающих при избыточном давлении газа, должна в течение 15 мин выдерживать напряжение 1,1 при избыточном давлении газа, равном нулю.
6.13 Требования к переходным процессам в емкостных трансформаторах
6.13.1 Переходный процесс, возникающий во вторичной цепи емкостного трансформатора после отключения в ней короткого замыкания при первичном напряжении 0,8—1,2 номинального значения, указанного в таблице 4, должен затухать до значения, отличающегося от исходного не более чем на 10 %, за время, соответствующее 10 периодам номинальной частоты.
6.13.2 При внезапных коротких замыканиях в первичной цепи емкостного трансформатора его вторичное напряжение в течение одного периода номинальной частоты должно снизиться до значения менее 10 % амплитудного значения до короткого замыкания.
6.13.3 Допустимые значения амплитуды колебания вторичного напряжения при включении емкостного трансформатора на полное номинальное первичное напряжение должны быть предусмотрены в эксплуатационной документации на трансформаторы конкретных типов.
6.14 Требования к стойкости электромагнитных трансформаторов при токах короткого замыкания
6.14.1 Электромагнитные трансформаторы должны в течение 1 с выдерживать токи короткого замыкания, возникающего на вводах вторичных обмоток.
6.14.2 По согласованию между потребителем и изготовителем в стандартах на трансформаторы конкретных типов указывают токи короткого замыкания между всеми вторичными выводами.
6.15 Метрологические характеристики
6.15.1 Метрологические характеристики должны быть установлены для следующих рабочих условий применения трансформаторов
частота переменного тока (50 ± 0,5) или (60 ± 0,5) Гц;
мощность активно-индуктивной нагрузки при коэффициенте мощности 0,8 определяется от
до
где Sном — номинальная мощность трансформатора в данном классе точности, В × А;
U1ном — номинальное значение первичного напряжения трансформатора, В;
U1 — значение первичного напряжения, подведенного к трансформатору, В;
0,8—1,2 номинального напряжения — для трансформаторов, предназначенных для измерения;
1) По согласованию с потребителем допускается более узкий диапазон мощности нагрузки, например от до
от 0,02 или 0,05 до 1,2; 1,5 или 1,9 номинального напряжения — для трансформаторов, предназначенных для защиты;
температура окружающего воздуха — в соответствии со стандартами на трансформаторы конкретных типов;
высота установки трансформаторов над уровнем моря — по 6.8.2.
6.15.2 Предельные значения допускаемых погрешностей трансформаторов в рабочих условиях применения по 6.15.1 при установившемся режиме работы должны соответствовать указанным в таблице 17.
6.15.3 По согласованию между потребителем и изготовителем в эксплуатационной документации на трансформаторы должны быть указаны зависимости погрешностей от влияющих факторов первичного напряжения, мощности нагрузки, коэффициента мощности нагрузки, частоты, температуры в диапазоне их рабочих значений, а также динамические характеристики.
Также должна быть указана точность определения зависимости погрешностей.
Зависимости погрешностей от каждого влияющего фактора следует приводить при номинальных значениях всех остальных влияющих факторов.
6.16 Ток холостого хода должен быть установлен изготовителем и указан в эксплуатационной документации на трансформаторы конкретных типов.
6.17 Сопротивление обмоток постоянному току должно быть установлено изготовителем и указано в эксплуатационной документации на трансформаторы конкретных типов.
6.18 Напряжение короткого замыкания должно быть указано в эксплуатационной документации на трансформаторы конкретных типов.

Таблица 17

Класс точности
Предел допускаемой погрешности

напряжения, %
угловой

0,1
±0,1
±5′
±0,15 срад

0,2
±0,2
±10′
±0,3 срад

0,5
±0,5
±20′
±0,6 срад

1,0
±1,0
±40′
±1,2 срад

3,0
±3,0
Не нормируют


±3,0
±120′
±3,5 срад


±6,0
±240′
±7,0 срад

Примечание — В таблице указаны погрешности трансформаторов для защиты в диапазоне первичных напряжений от 0,2 до 1,2 номинального. При значении первичного напряжения, подведенного к трансформатору для защиты, равном 0,02 номинального, предельные значения допускаемых погрешностей должны быть увеличены в два раза. При значении первичного напряжения, подведенного к трансформатору для защиты, равном 0,05; 1,5 или 1,9 номинального, предельные значения допускаемых погрешностей по согласованию между разработчиком и заказчиком могут быть увеличены в два раза. В стандартах на трансформаторы конкретных типов должны быть указаны расчетные значения погрешностей при значениях напряжений 0,02; 0,05; 1,5 и 1,9 номинального.
6.19 Требования к надежности
6.19.1 Средняя наработка до отказа должна быть установлена по ГОСТ 27.003 и указана в стандартах на трансформаторы конкретных типов.
6.19.2 Средний срок службы трансформаторов — 25 лет.
6.19.3 Требования по ремонтопригодности должны быть указаны в стандартах на трансформаторы конкретных типов.
6.20 Комплектность
6.20.1 Комплектность трансформаторов должна быть установлена в стандартах на трансформаторы конкретных типов.
6.20.2 К трансформаторам должна быть приложена эксплуатационная документация по ГОСТ 2,601 паспорт, руководство по эксплуатации, ведомости ЗИП (при наличии).
Для трансформаторов на напряжение до 10 кВ включительно по согласованию с потребителем, если это установлено в стандартах на трансформаторы конкретных типов, паспорт может быть заменен этикеткой.
Для трансформаторов на напряжение до 660 В номенклатура эксплуатационной документации может быть сокращена и должна быть указана в стандартах на трансформаторы конкретных типов.
Число экземпляров эксплуатационной документации, прилагаемой к трансформаторам, устанавливают в стандартах на трансформаторы конкретных типов.
6.21 Маркировка
6.21.1 Все вводы и выводы трансформаторов для внешнего присоединения следует обозначать способом, обеспечивающим долговечность и стойкость маркировки к атмосферным воздействиям. Условные обозначения вводов и выводов — в соответствии с таблицами 5—12.
6.21.2 Каждый трансформатор должен быть снабжен прикрепленной на видном месте табличкой, на которой указывают
товарный знак предприятия-изготовителя или его наименование;
наименование «трансформатор напряжения»;
тип трансформатора и климатическое исполнение;
порядковый номер по системе нумерации предприятия-изготовителя;
обозначение стандарта на трансформаторы конкретных типов или обозначение настоящего стандарта;
год выпуска (на трансформаторах, предназначенных для экспорта, не указывают);
номинальное напряжение первичной обмотки, В;
номинальные напряжения каждой из вторичных обмоток, В (для трехфазных трехобмоточных трансформаторов указывают только напряжение основной вторичной обмотки);
номинальную частоту, Гц (при частоте 50 Гц допускается не указывать);
классы точности и соответствующие им номинальные мощности, В × А;
предельную мощность, В × А;
полную массу трансформатора, кг;
условное обозначение схемы и группы соединения обмоток (для трехфазных трансформаторов).
Примечания
1 Допускается наносить перечисленные данные на одну или несколько табличек, а также частично или полностью на элементы конструкции трансформатора.
2 Допускается наносить на табличку дополнительную информацию в соответствии со стандартами на трансформаторы конкретных типов.
6.21.3 В каскадных и емкостных трансформаторах маркируют каждый блок или конденсатор, входящий в комплект трансформатора.
6.21.4 Маркировка транспортной тары — по ГОСТ 14192.
6.22 Упаковка
6.22.1 Перед упаковыванием все неокрашенные наружные поверхности, которые могут подвергаться коррозии и порче, должны быть подвергнуты консервации.
6.22.2 Упаковка должна обеспечивать сохранность трансформаторов при их транспортировании. Вид упаковывания должен быть предусмотрен в стандартах на трансформаторы конкретных типов.
7 Требования безопасности
7.1 Требования безопасности к конструкции трансформаторов — по ГОСТ 12.2.007.0 и ГОСТ 12.2.007.3.
7.2 Требования безопасности при испытаниях трансформаторов — по ГОСТ 8.216 и ГОСТ 12.3.019.
8 Правила приемки
8.1 Для проверки соответствия трансформаторов требованиям настоящего стандарта и стандартов на трансформаторы конкретных типов следует проводить испытания для утверждения типа; на соответствие утвержденному типу; квалификационные; приемосдаточные; периодические; типовые.
8.2 Объем испытаний и проверок, в зависимости от конструктивных особенностей и назначения трансформатора, следует выбирать по таблице 18 и устанавливать в стандартах на трансформаторы конкретных типов.
Таблица 18

Наименование испытания и проверки
Необходимость проведения испытаний
Пункт настоящего стандарта

для утверждения типа
на соответствие утвержденному типу
квалификационных
приемосдаточных
периоди-ческих
Технические требования
Методы контроля

1 Проверка на соответствие требованиям сборочного чертежа
+
+
+
+
+
6.1; 6.20.2
9.1

2 Испытание пробы масла маслонаполненных трансформаторов

определение пробивного напряжения


+
+
+
6.12.7
9.2

определение тангенса угла диэлектрических потерь


+
+
+
6.12.5; 6.12.7
9.2; 9.17

3 Измерение сопротивления изоляции обмоток


+
О
+
6.12.6
9.3

4 Испытания электрической прочности изоляции

одноминутным напряжением промышленной частоты


+
+
+
6.12
9.4

трансформаторов с номинальным напряжением 330 кВ и выше напряжением коммутационного импульса


+

+
6.12
9.4

трансформаторов с номинальным напряжением свыше 1000 В напряжениями грозового импульса


+


6.12
9.4

внутренней изоляции первичной обмотки на стойкость к тепловому пробою


О


6.12
9.4

изоляции первичной обмотки газонаполненных трансформаторов при остаточном давлении газа, равном нулю


+

+
6.12.8
9.4

проверка длины пути утечки


+


6.9.1.4
9.20

5 Измерение тока холостого хода


+
+
+
6.16
9.5

6 Определение погрешностей

при нагрузках, соответствующих всем классам точности, присвоенных данному трансформатору
+
+
+

+
6.15
9.6

при нагрузках, соответствующих высшему классу точности



+

6.15
9.6

7 Проверка группы соединения обмоток
+
+
+
+
+
5.10
9.6

8 Измерения напряжения на вводах разомкнутого треугольника дополнительных вторичных обмоток трехобмоточных трансформаторов при симметричном номинальном первичном напряжении
+
+
+
+
+
6.4, 6.5
9.7

при замыкании одной из фаз на землю
+

+


6.7
9.8

9 Испытание на нагрев


+


6.11
9.9

10 Испытание на устойчивость трансформаторов к длительному однофазному замыканию питающей сети на землю


+


6.6, 6.11
9.10

11 Испытание на устойчивость трансформаторов к токам короткого замыкания


+


6.14
9.11

12 Проверка работоспособности емкостных трансформаторов в переходных режимах


+


6.13
9.12

13 Климатические испытания в объеме, предусмотренном стандартами на трансформаторы конкретных типов
+
+
+

О
6.8.1
9.13

14 Механические испытания в объеме, предусмотренном стандартами на трансформаторы конкретных типов


+

О
6.8.3
9.13

15 Испытание на прочность при транспортировании


+


10.1
9.15

16 Испытание упаковки на сбрасывание


+


10.1
9.16

17 Измерение уровня частичных разрядов электромагнитных трансформаторов с уровнем изоляции «а» по ГОСТ 1516.3


+
+
+
6.12.5
9.17

18 Подтверждение средней наработки до отказа




+
6.18.1
9.18

19 Испытание маслонапол-ненных трансформаторов на герметичность


+
+
+
6.9.2.1
9.19

20 Измерение сопротивления обмоток постоянному току


+
О
+
6.17
9.21

21 Определение количественной утечки газа газонаполненных трансформаторов


+
+
+
6.9.2.8
9.14

22 Испытание газонаполненных трансформаторов на взрывобезопасность


+


6.9.2.7
9.22

Примечания
1 Знак «+» означает, что испытания проводят; знак «— » — не проводят; буква «О» — испытания проводят, если они предусмотрены в стандартах на трансформаторы конкретных типов.
2 Для трансформаторов класса напряжения 330 кВ и выше вместо испытания электрической прочности изоляции одноминутным напряжением промышленной частоты допускается проводить испытания электрической прочности изоляции напряжением коммутационного импульса.
3 Для трансформаторов с номинальной частотой 60 Гц все испытания проводят при частоте 50 Гц (кроме определения погрешностей емкостных трансформаторов), о чем должно быть указано в паспорте.
8.3 Общие положения
8.3.1 При испытаниях квалификационных, для утверждения типа, периодических, типовых и на соответствие утвержденному типу отдельные испытания, не влияющие на результаты других испытаний, предусмотренных таблицей 18, допускается проводить на разных трансформаторах (параллельные испытания).
Перечень параллельных испытаний следует устанавливать в стандартах на трансформаторы конкретных типов.
8.3.2 Допускается совмещение отдельных видов испытаний из перечисленных в 8.1.
8.3.3 Типоисполнения и число трансформаторов, подвергаемых каждому испытанию при испытаниях квалификационных, для утверждения типа, периодических, типовых и на соответствие утвержденному типу следует указывать в стандартах на трансформаторы конкретных типов.
8.3.4 При приемосдаточных испытаниях трансформаторы подвергают проверке методом сплошного контроля.
8.3.5 Допускается проводить испытания на сборочных единицах и деталях трансформаторов.
Допускается по согласованию между потребителем и изготовителем при испытаниях квалификационных, для утверждения типа, периодических, типовых и на соответствие утвержденному типу засчитывать испытания трансформаторов других типов (серий), имеющих аналогичные конструктивные или технологические решения или одинаковые применяемые материалы, при наличии таких указаний в стандартах на трансформаторы конкретных типов.
8.3.6 Последовательность испытаний может быть произвольной, если иные требования не установлены в стандартах на трансформаторы конкретных типов.
8.3.7 При отрицательных результатах приемосдаточных, периодических и типовых испытаний после устранения дефектов повторные испытания проводят в полном объеме или в технически обоснованных случаях в сокращенном объеме повторяют испытания, по которым получены неудовлетворительные результаты, испытания, которые могли повлиять на возникновение дефектов, а также те испытания, которые не проводились.
Если конкретные причины неудовлетворительного результата не установлены, повторные испытания по пунктам несоответствия проводят на удвоенном числе образцов.
Результаты повторных испытаний являются окончательными.
8.4 Квалификационные испытания
8.4.1 Порядок проведения квалификационных испытаний — по ГОСТ 15.001 и ГОСТ 15.309.
8.4.2 Допускается засчитывать в качестве квалификационных испытаний испытания опытных образцов, проведенные в соответствии с таблицей 18, если соблюдены следующие условия
опытные образцы были изготовлены по технологии и на оборудовании, предусмотренных для серийного производства;
при изготовлении установочной серии не проводилась доработка конструкции, требующая проведения испытаний;
время, прошедшее после испытаний опытных образцов, не превышает срок, установленный для периодических испытаний.
Если эти условия не соблюдены, то при соответствующем техническом обосновании допускается засчитывать отдельные испытания, на результатах которых несоблюдение указанных условий не отражается.
8.5 Приемосдаточные испытания
Приемосдаточные испытания проводит служба технического контроля или другая уполномоченная на это служба предприятия-изготовителя.
Одновременно с приемосдаточными испытаниями каждый трансформатор должен подвергаться первичной поверке по правилам, принятым в стране-изготовителе, и по методике ГОСТ 8.216.
8.6 Периодические испытания
8.6.1. Периодические испытания следует проводить на трансформаторах серийного производства не реже одного раза в 5 лет.
Подтверждение средней наработки до отказа первый раз проводят через 10 лет после начала серийного производства, затем — не реже одного раза в 5 лет.
8.6.2 Если производство трансформаторов было прервано ко времени наступления срока очередных периодических испытаний, то при возобновлении выпуска следует проводить периодические испытания трансформаторов на образцах первой партии, изготовленной после возобновления производства.
До завершения отдельных (длительных по времени) испытаний, входящих в объем периодических испытаний, основанием для выпуска трансформаторов является протокол предыдущих периодических испытаний.
8.7 Типовые испытания следует проводить в полном или сокращенном объеме квалификационных испытаний при изменении конструкции, применяемых материалов или технологии производства, если эти изменения могут оказать влияние на характеристики или параметры трансформаторов.
В зависимости от характера вносимого изменения (изменений) испытаниям допускается подвергать отдельные сборочные единицы, детали, образцы материалов и др.
8.8 Испытания для утверждения типа и на соответствие утвержденному типу следует проводить по правилам, принятым в стране-изготовителе.
9 Методы контроля
9.1 Проверка на соответствие требованиям сборочного чертежа
9.1.1 Проверке подлежат
габаритные1), установочные и присоединительные размеры, для которых на сборочном чертеже указаны предельные отклонения;
масса трансформатора1);
состояние поверхности наружных изоляционных частей;
состояние защитных покрытий наружных частей;
состояние площадок под заземляющие зажимы;
правильность заполнения табличек технических данных;
маркировка выводов;
комплектность.
1) Только при испытаниях квалификационных, для утверждения типа, типовых, периодических и на соответствие утвержденному типу.
Проверку проводят внешним осмотром, измерением универсальным измерительным инструментом, при помощи шаблонов, а также взвешиванием трансформатора на весах общего применения или при помощи пружинного динамометра.
9.1.2 При приемосдаточных испытаниях размеры допускается проверять на деталях и сборочных единицах до сборки трансформатора.
9.1.3 Допускается определять массу трансформатора суммированием масс всех сборочных единиц.
9.2 Определение пробивного напряжения и тангенса угла диэлектрических потерь при испытании пробы масла — по ГОСТ 6581. Для трансформаторов с номинальным напряжением до 35 кВ включительно проба масла отбирается в тот же день из емкости, из которой масло заливается в трансформатор, а для трансформаторов с номинальным напряжением 110 кВ и выше — непосредственно из трансформатора. Порядок взятия пробы должен быть установлен в стандартах на трансформаторы конкретных типов.
9.3 Измерение сопротивления изоляции обмоток проводится мегаомметром на 2500 В для первичных обмоток незаземляемых трансформаторов и на 1000 В — для первичных обмоток заземляемых и вторичных обмоток всех трансформаторов.
9.4 Испытание электрической прочности изоляции — по ГОСТ 1516.2 и ГОСТ 22756.
При повторных испытаниях внутренней изоляции первичных обмоток, проводимых с целью проверки работоспособности трансформаторов после проведения испытаний других видов, испытательное напряжение должно быть не более 90 % испытательного напряжения, предусмотренного ГОСТ 1516.1 и ГОСТ 1516.3.
9.5 Измерение тока холостого хода — по ГОСТ 3481.1.
9.6 Определение погрешностей (6.15) и проверка группы соединения обмоток (5.10) —по ГОСТ 8.216. При испытании трехобмоточных трансформаторов обмотка, свободная от испытаний, должна быть разомкнута.
Для трехобмоточных трансформаторов, длительно работающих с включенными нагрузками на обеих вторичных обмотках, погрешности трансформаторов определяют с включением нагрузок на обе вторичные обмотки. Порядок распределения нагрузок между вторичными обмотками при определении погрешностей должен быть указан в стандартах на трансформаторы конкретных типов.
Примечания
1 Погрешности емкостных трансформаторов, предназначенных для работы в электрических цепях переменного тока частотой 50 Гц, определяют при частотах питающего напряжения 49,5 и 50,5 Гц.
2 Погрешности емкостных трансформаторов, предназначенных для работы в электрических цепях переменного тока частотой 60 Гц, определяют при частотах питающего напряжения 59,5 и 60,5 Гц.
3 Погрешности емкостных трансформаторов определяют при нагрузках, соответствующих всем классам точности. С разрешения Государственного центра по испытанию средств измерений (по специализации) по результатам испытаний для утверждения типа (по проверке соответствия утвержденному типу) трансформатора допускается проверять погрешности этих трансформаторов только по высшему классу точности.
4 Погрешности обмоток для защиты определяют при напряжениях 0,2 и 1,2 номинального значения.
5 При приемосдаточных испытаниях определение погрешностей электромагнитных трансформаторов проводят при меньшем числе значений напряжений и мощностей, если обоснованность такого уменьшения подтверждена квалификационными и типовыми испытаниями.
9.7 Напряжение на вводах разомкнутого треугольника вторичных дополнительных обмоток трехобмоточных трансформаторов (6.4) измеряют при нагрузке этих обмоток номинальной мощностью с коэффициентом мощности 0,8 (характер нагрузки — активно-индуктивный).
Для получения симметрии первичного фазного напряжения допускается испытывать трансформатор в питающей сети с заземленной нейтралью по схемам, изображенным на рисунках Б.9 и Б.10 приложения Б.
9.8 Напряжение на вводах разомкнутого треугольника вторичных дополнительных обмоток трехобмоточных трансформаторов (6.7), возникающее при замыкании одной из фаз первичных обмоток на землю, измеряют при номинальном значении нагрузки дополнительных обмоток и значении нагрузки основных вторичных обмоток, соответствующей низшему классу точности.
При этом трансформаторы включаются в сеть с изолированной нейтралью, а их линейные выводы первичных обмоток поочередно закорачивают на землю. Допускается проводить испытание на любых двух фазах трансформаторов.
Примечание — При испытаниях по 9.7 и 9.8 необходимо заземление дополнительных вторичных обмоток через пробивной предохранитель для трансформаторов, включаемых по схемам, изображенным на рисунках Б.4 и Б.5 приложения Б.
9.9 Испытание на нагрев при предельной мощности — по ГОСТ 3484.2 методом непосредственной нагрузки при питании номинальным напряжением со стороны первичной обмотки и распределением нагрузки согласно 5.4. При этом допускается контролировать только температуру обмоток по изменению сопротивления, а у маслонаполненных трансформаторов также температуру верхних слоев масла.
9.10 Испытание на устойчивость к длительным однофазным замыканиям питающей сети на землю проводят только для заземляемых трансформаторов, предназначенных для работы в сетях с изолированной нейтралью (6.6).
К трехфазным трансформаторам, а также к трехфазным группам однофазных трансформаторов, объединенных предприятием-изготовителем в единую конструкцию, подводят трехфазное практически синусоидальное и практически симметричное напряжение, равное наибольшему рабочему значению по ГОСТ 1516.3 с последующим замыканием одной из фаз первичной обмотки на землю. К однофазным трансформаторам подводят напряжение, равное 1,9 номинального.
При испытании трансформаторов вторичные обмотки должны быть нагружены мощностью, указанной в стандартах на трансформаторы конкретных типов.
В этом режиме трансформаторы испытывают в течение 8 ч. Превышение температуры трансформаторов должно соответствовать 6.11.4.
Температуру трансформаторов, подвергающихся повышенному напряжению в течение 30 с (таблица 14), не контролируют.
После этих испытаний трансформаторы должны быть подвергнуты повторным испытаниям в объеме приемосдаточных.
9.11 Испытания на устойчивость к токам короткого замыкания проводят следующим образом.
К первичным обмоткам трансформаторов подводят напряжение, равное 0,9—1,05 номинального, при разомкнутых вторичных обмотках. Затем одну из вторичных обмоток с помощью специального устройства закорачивают и выдерживают режим в течение 1 с. При этом напряжение на выводах первичной обмотки должно сохраняться в указанных пределах.
Критерии оценки должны быть указаны в стандартах на трансформаторы конкретных типов.
При испытании электромагнитных трансформаторов и электромагнитных устройств емкостных трансформаторов напряжение допускается подводить со стороны вторичных обмоток при замкнутой накоротко первичной обмотке.
9.12 Работу трансформатора при переходных процессах проверяют с осциллографической записью или определением показателей процесса другими методами, обеспечивающими необходимую точность измерений.
9.12.1 Испытание на затухание переходного процесса при кратковременном коротком замыкании во вторичной цепи (6.13.1) проводят замыканием накоротко вводов основной вторичной обмотки трансформатора при опыте холостого хода. Падение напряжения во внешней цепи при этом должно быть не более 10 % номинального значения. Длительность переходного процесса определяют десять раз. Если хотя бы в одном случае длительность переходного процесса составит более 10 периодов номинальной частоты, то проводят дополнительно 90 аналогичных проверок. При этом длительность переходного процесса может быть от 10 до 15 периодов номинальной частоты не более чем в трех случаях из суммарных 100.
9.12.2 Испытание на скорость снижения вторичного напряжения до установленного значения (6.13.2) при внезапном коротком замыкании на зажимах первичной цепи проводят по два раза с наименьшей в высшем классе точности и наибольшей в низшем классе точности активно-индуктивной нагрузкой с коэффициентом мощности 0,8 и при мгновенном первичном напряжении, близком к нулевому и максимальному значениям. Эта проверка может быть проведена по схеме, изображенной на рисунке 2, соответствующей эквивалентной схеме емкостного трансформатора. Параметры эквивалентной схемы должны быть указаны в стандартах на трансформаторы конкретных типов.
Допускается применять другие методы испытаний, которые должны быть указаны в стандартах на трансформаторы конкретных типов.
9.13 Методы и виды испытаний трансформаторов на устойчивость к климатическим внешним воздействующим факторам по ГОСТ 16962.1 и механическим внешним воздействующим факторам по ГОСТ 16962.2 должны быть указаны в стандартах на трансформаторы конкретных типов в зависимости от исполнения и конструктивных особенностей трансформаторов.
При испытаниях трансформаторов категории размещения 1 на воздействие нагрузок от ветра, гололеда и тяжения проводов основание трансформатора жестко закрепляют, а к середине вывода его первичной обмотки прикладывают нагрузку, установленную в 6.8.3. Указанную нагрузку прикладывают поочередно в трех взаимно перпендикулярных направлениях в горизонтальной плоскости по оси вывода в сторону от трансформатора, в горизонтальной плоскости в направлении, перпендикулярном к оси вывода, и в вертикальной плоскости по направлению к основанию.

Т1 — питающий трансформатор; С — конденсатор отбора мощности емкостного трансформатора; Т2 — трансформатор напряжения для осциллографирования; ЭУ— электромагнитное устройство емкостного трансформатора; В — высоковольтный короткозамыкатель; S2 — нагрузка основной вторичной обмотки
Рисунок 2
Для стержневых вводов и выводов, расположенных вертикально, нагрузку прикладывают поочередно в двух направлениях вертикально вверх и горизонтально в любом направлении.
В каждом направлении время выдержки нагрузки — 1 мин.
Трансформатор считают выдержавшим испытание, если во время и после его проведения не отмечено повреждений трансформатора или вывода, течи масла у маслонаполненных и увеличение утечки газа у газонаполненных трансформаторов.
9.14 Определение количественной утечки газа газонаполненных трансформаторов
Испытание по определению утечки газа проводят при температуре окружающей среды (25±10)°С.
Испытуемый трансформатор, заполненный газом до номинального рабочего давления, помещают в замкнутый объем (камеру, чехол из полимерной пленки), который не должен превышать наружный объем испытуемого трансформатора более чем в 3 раза.
Внутри объема должен располагаться вентилятор, способствующий перемешиванию смеси воздуха и газа, заполняющего трансформатор.
После установки трансформатора в замкнутый объем в последний вводят щуп чувствительного прибора (течеискателя), реагирующего на малые концентрации газа, которым заполнен испытуемый трансформатор, и фиксируют показания прибора. Через определенный промежуток времени выдержки трансформатора в замкнутом объеме (например 1 ч) операцию повторяют.
Годовую утечку газа q, % массы газа в испытуемом трансформаторе, определяют по формуле
,

где DС
— разность концентрации газа в замкнутом объеме за время выдержки, г/л;

Р0
= 1 кгс/см2;

DV
— разность между замкнутым и наружным объемом испытуемого трансформатора, л;

Рном
— номинальное давление газа (абсолютное) в трансформаторе, кгс/см2;

Vгт
— объем газа в трансформаторе, л;

d
— плотность газа в трансформаторе;

t
— время между измерениями, ч.

Для трансформатора, заполненного элегазом, годовую утечку газа определяют по формуле
.
Примечания
1 Значения объемов, необходимых для вычисления утечки, должны быть определены с погрешностью, не превышающей 20 %.
2 Если шкала прибора для определения утечки не калибрована непосредственно в значениях концентрации газа, г/л, эти значения находят по зависимости С = f(н) (где н — показания прибора в единицах шкалы), приложенной к свидетельству об аттестации (калибровке), проводимой в установленном порядке.
9.15 Испытание на прочность при транспортировании
9.15.1 Методы испытания на прочность при транспортировании по ГОСТ 23216 должны быть указаны в стандартах на трансформаторы конкретных типов.
9.15.2 После испытания трансформаторы распаковывают, проводят внешний осмотр трансформаторов, тары, креплений, а также проверяют параметры, установленные в стандартах на трансформаторы конкретных типов.
9.15.3 Трансформатор и его упаковку считают выдержавшими испытание, если
а) при внешнем осмотре упаковки не обнаружены механические повреждения тары, ведущие к потере защитных свойств, а также нарушения креплений упакованных изделий в таре. Допускается ослабление креплений изделия в таре, если это не привело к повреждению трансформатора в процессе испытания;
б) при внешнем осмотре трансформатора не обнаружены повреждения, препятствующие его работе, а результаты повторных испытаний на электрическую прочность изоляции и определение погрешностей — положительные.
9.15.4 При упаковке нескольких трансформаторов в один ящик допускается проводить проверку параметров выборочно. Число подлежащих испытанию трансформаторов должно быть указано в стандартах на трансформаторы конкретных типов.
9.15.5 Для крупногабаритных трансформаторов испытание допускается не проводить, а способность трансформаторов и упаковки противостоять разрушающему воздействию механических нагрузок при транспортировании оценивают по результатам транспортирования этих или аналогичных изделий потребителю.
9.16 Испытание упаковки трансформатора на сбрасывание
9.16.1 Методы испытания упаковки трансформаторов на сбрасывание по ГОСТ 18425 должны быть указаны в стандартах на трансформаторы конкретных типов.
9.16.2 Испытанию подвергают упаковку суммарной массой (вместе с упакованным трансформатором) до 200 кг. Упаковку суммарной массой более 200 кг, а также упаковку, маркированную знаком «Хрупкое. Осторожно», испытанию на прочность при сбрасывании не подвергают.
9.16.3 Ящик (упаковку) с находящимся в нем трансформатором (трансформаторами) или макетом, имитирующим упакованные трансформаторы, сбрасывают один раз на площадку по ГОСТ 18425 на его торцевую сторону с высоты
0,5 м — при суммарной массе (трансформатора и упаковки) до 100 кг включительно;
0,3 м — при суммарной массе (трансформатора и упаковки) свыше 100 до 200 кг включительно.
9.16.4 По окончании испытания проводят внешний осмотр упаковки.
9.16.5 Упаковку считают выдержавшей испытание, если при внешнем осмотре не обнаружены повреждения, ведущие к потере ее защитных свойств. Допускается ослабление отдельных креплений.
9.17 Уровень частичных разрядов определяют по ГОСТ 1516.3 и ГОСТ 20074. Метод измерения тангенса угла диэлектрических потерь маслонаполненных трансформаторов должен быть указан в стандартах на трансформаторы конкретных типов.
9.18 Подтверждение средней наработки до отказа проводят на основании сбора у потребителей и обработки информации о работе трансформаторов или их прототипов по методике, указанной в стандарте на трансформатор конкретного типа.
9.19 Испытания на герметичность — по ГОСТ 3484.5.
9.20 Длину пути утечки внешней изоляции трансформаторов на соответствие требованиям 6.9.1.4 проверяют по ГОСТ 9920.
9.21 Измерение сопротивления обмоток постоянному току проверяют по ГОСТ 3484.1.
9.22 Методы испытания газонаполненных трансформаторов на взрывобезопасность должны быть указаны в стандартах на трансформаторы конкретных типов.
10 Транспортирование и хранение
10.1 Транспортирование
10.1.1 Транспортирование упакованных трансформаторов осуществляют транспортом любого вида. Требования к транспортированию в части воздействия механических факторов по ГОСТ 23216 и климатических факторов внешней среды по ГОСТ 15150 должны быть указаны в стандартах на трансформаторы конкретных типов.
При транспортировании в транспортных контейнерах трансформаторы без индивидуальной упаковки должны быть надежно закреплены и предохранены от механических повреждений.
Допускается транспортирование трансформаторов в пределах одного города без упаковки при условии принятия необходимых мер, исключающих возможность их повреждения.
10.2 Хранение
10.2.1 Требования к хранению трансформаторов в части воздействия климатических факторов внешней среды по ГОСТ 15150 должны быть указаны в стандартах на трансформаторы конкретных типов.
11 Указания по эксплуатации
При вводе в эксплуатацию, а также в процессе эксплуатации трансформаторов следует соблюдать требования, установленные в стандартах на трансформаторы конкретных типов. Эти требования указывают в эксплуатационной документации.
12 Гарантии изготовителя
12.1 Изготовитель гарантирует соответствие трансформаторов требованиям настоящего стандарта при соблюдении условий применения, эксплуатации, хранения и транспортирования, установленных настоящим стандартом.
Гарантийный срок эксплуатации трансформаторов — три года с момента ввода в эксплуатацию, но не более трех с половиной лет со дня отгрузки трансформатора с предприятия-изготовителя.
12.2 Для трансформаторов, предназначенных для экспорта, гарантийный срок эксплуатации устанавливается в соответствии с нормами, принятыми в стране-изготовителе.
ПРИЛОЖЕНИЕ А
(рекомендуемое)
Выбор номинальных мощностей для трансформаторов
различных классов точности
Номинальные мощности для трансформаторов различных классов точности, выбираемые по 5.2, определяют, исходя из установленных предельных значений погрешностей напряжения для этих классов точности.
На рисунке А.1 приведены рекомендуемые характеристики процентного изменения вторичного напряжения трансформатора, соответствующие коэффициенту мощности вторичной нагрузки 0,8 при активно-индуктивной нагрузке.

f — погрешность напряжения, %; sном — номинальная мощность
для высшего класса точности, В×А
Верхняя характеристика соответствует приложенному первичному напряжению 0,8 Uном; нижняя — напряжению 1,2 Uном. Характеристики позволяют определять коэффициенты кратности номинальных мощностей для более низких классов точности по выбранной номинальной мощности для высшего класса точности. Характеристики приведены для трансформатора, имеющего высший класс точности 0,2.
Выбор кратности номинальных мощностей для классов точности 1 и 3 допускается осуществлять по рисунку А.1 по выбранной номинальной мощности для класса точности 0,5.
Класс точности 0,5 для данного трансформатора — высший. Коэффициенты кратности мощностей приблизительно равны 1,5 и 3,5.
Выбор мощностей осуществляют по рисунку А.1 так, чтобы характеристика погрешности трансформатора имела бы определенный запас, составляющий примерно 20 % предельного значения погрешности вторичного напряжения или 5 % с учетом результатов климатических испытаний, проведенных при верхнем и нижнем значениях рабочих температур окружающей среды по ГОСТ 15150 и ГОСТ 15543.1.
На рисунке А.1 прямоугольник ABCD характеризует предельно допускаемую зону погрешности напряжения трансформатора при изменении вторичной нагрузки от 0,25 до номинального значения.
Погрешность напряжения f, %, определяют по формуле
(А.1)

где Кном
— номинальный коэффициент трансформации;

U1
— значение первичного напряжения, В;

U2
— значение вторичного напряжения, соответствующее приложенному напряжению U1 при данных условиях измерения, В.

ПРИЛОЖЕНИЕ Б
(справочное)
Структурные электрические схемы включения трансформаторов
Схемы включения трансформаторов должны соответствовать изображенным на рисунках Б.1—Б.10.

Рисунок Б.1 — Схема включения однофазных незаземляемых
двухобмоточных трансформаторов в трехфазных электрических сетях
с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.2 — Схема включения однофазных заземляемых и трехфазных заземляемых двухобмоточных трансформаторов в трехфазных электрических сетях с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.3 — Схема включения однофазных заземляемых и трехфазных заземляемых двухобмоточных трансформаторов в трехфазных электрических сетях с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.4 — Схема включения трехфазных трехобмоточных трансформаторов в трехфазных электрических сетях с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.5 — Схема включения трехфазных трехобмоточных трансформаторов в трехфазных электрических сетях с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.6 — Схема включения однофазных заземляемых и трехфазных заземляемых трехобмоточных трансформаторов с двумя основными вторичными обмотками в трехфазных электрических сетях с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.7 — Схема включения однофазных заземляемых трехобмоточных трансформаторов с двумя основными вторичными обмотками в трехфазных электрических сетях с заземленной нейтралью и напряжением 110 кВ и выше

Рисунок Б.8 — Схема включения однофазных заземляемых трехобмоточных трансформаторов в трехфазных электрических сетях с изолированной нейтралью и напряжением 3 — 35 кВ

Рисунок Б.9 — Схема включения однофазных заземляемых трехобмоточных трансформаторов в трехфазных электрических сетях с заземленной нейтралью и напряжением 110 кВ и выше

Рисунок Б. 10 — Схема включения однофазных емкостных трансформаторов напряжения в трехфазных электрических сетях с заземленной нейтралью и напряжением 110 кВ и выше

Допускается заземлять непосредственно один из линейных концов вторичных обмоток вместо заземления нейтрали вторичных основных обмоток трансформаторов, соединенных по схемам, изображенным на рисунках Б.2, Б.4, Б.6 — Б.10. На схемах, изображенных на рисунках Б.8 — Б.10, допускается любое чередование фаз вторичных дополнительных обмоток, соединенных по схеме разомкнутый треугольник.
Схема включения трехобмоточных трансформаторов класса напряжения 110 кВ, предназначенных для работы в сетях с изолированной нейтралью, должна соответствовать изображенной на рисунке Б.8.

ГОСТ 6570-96
Группа П32
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
СЧЕТЧИКИ ЭЛЕКТРИЧЕСКИЕ АКТИВНОЙ
И РЕАКТИВНОЙ ЭНЕРГИИ ИНДУКЦИОННЫЕ
Общие технические условия
Electrical induction active and reactive energy meters.
General specifications
ОКС 17.220
ОКП 42 2820, 42 2830, 42 2840
Дата введения 1997-07-01
Предисловие
1 РАЗРАБОТАН Акционерным Обществом Ленинградский электромеханический завод» (АО «ЛЭМЗ»)
2 ВНЕСЕН Госстандартом России
ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 10 от 4 октября 1996 г.)
За принятие проголосовали

Наименование государства
Наименование национального органа стандартизации

Азербайджанская Республика
Азгосстандарт

Республика Армения
Армгосстандарт

Республика Белоруссия
Белстандарт

Республика Казахстан
Госстандарт Республики Казахстан

Киргизская Республика
Киргизстандарт

Республика Молдова
Молдовастандарт

Российская Федерация
Госстандарт России

Республика Таджикистан
Таджикский государственный центр по стандартизации, метрологии и сертификации

Туркменистан
Туркменглавгосинспекция

Республика Узбекистан
Узгосстандарт

Украина
Госстандарт Украины

Настоящий стандарт соответствует МЭК 145-63 «Счетчики вар-часов (реактивной энергии)» и МЭК 521-88 «Счетчики активной энергии переменного тока классов 0,5; 1 и 2»
3 Постановлением Государственного Комитета Российской Федерации по стандартизации, метрологии и сертификации от 31 марта 1997 г. N 118 межгосударственный стандарт ГОСТ 6570-96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1997 г.
4 ВЗАМЕН ГОСТ 6570-75

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
1.1 Настоящий стандарт распространяется на стационарные однофазные и трехфазные счетчики электрической энергии индукционные (далее — счетчики) однотарифные и многотарифные (за исключением устройства переключения тарифов, требования к которым устанавливаются в технических условиях), применяемые для учета активной и реактивной энергии переменного тока частотой от 45 до 65 Гц в условиях умеренного и тропического климата в закрытых помещениях при отсутствии в воздухе этих помещений агрессивных паров и газов.
Допускается для счетчиков реактивной энергии класса точности 3,0 диапазон частот переменного тока 40-60 Гц.
Стандарт применяется для счетчика в комплекте с вспомогательным оборудованием, включая трансформаторы тока, если они заключены в корпус прибора.
Стандарт не распространяется на образцовые счетчики, счетчики с предварительной оплатой, счетчики с указателем максимума нагрузки, счетчики с датчиком импульсов.
1.2 Требования 5.1; 5.3-5.5; 6.2-6.17; 6.21-6.39; 6.48; 6.49; 9.2 е); раздела 7 являются обязательными при определении качества счетчиков.
Требования к качеству счетчиков, обеспечивающие безопасность для жизни, здоровья и имущества населения, охраны окружающей среды, изложены в 5.3-5.5; 6.2; 6.3; 6.11; 6.21-6.25; 6.27; 6.30; 6.32; 6.34; 6.49.1; 6.49.9; разделе 7.

2. НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ 2.601-95 ЕСКД. Эксплуатационные документы
ГОСТ 8.259-77 ГСИ. Счетчики электрические активной и реактивной энергии индукционные. Методы и средства поверки
ГОСТ 8.401-80 ГСИ. Классы точности средств измерений.Общие требования
ГОСТ 8.417-81 ГСИ. Единицы физических величин
ГОСТ 9.048-89 ЕСЗКС. Изделия технические. Методы лабораторных испытаний на стойкость к воздействию плесневых грибов
ГОСТ 12.1.026-80 ССБТ. Шум. Определение шумовых характеристик источников шума в свободном звуковом поле над звукоотражающей плоскостью. Технический метод
ГОСТ 20.57.406-81 Комплексная система контроля качества. Изделия электронной техники, квантовой электроники и электротехнические. Методы испытаний
ГОСТ 26.008-85 Шрифты для надписей, наносимых методом гравирования. Исполнительные размеры
ГОСТ 26.020-80 Шрифты для средств измерений и автоматизации. Начертания и основные размеры
ГОСТ 27.410-87 Надежность в технике. Методы контроля показателей надежности и планы контрольных испытаний на надежность
ГОСТ 2930-62 Приборы измерительные. Шрифты и знаки
ГОСТ 9181-74 Приборы электроизмерительные. Упаковка, маркировка, транспортирование и хранение
ГОСТ 14192-77 Маркировка грузов
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15151-69 Машины, приборы и другие технические изделия для районов с тропическим климатом. Общие технические условия
ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия
ГОСТ 25372-95 Счетчики электрической энергии. Условные обозначения
ГОСТ 26828-86 Изделия машиностроения и приборостроения. Маркировка
ГОСТ 27483-87 Испытания на пожароопасность. Методы испытаний. Испытания нагретой проволокой
ГОСТ 27570.0-87 Безопасность бытовых и аналогичных электрических приборов. Общие требования и методы испытаний

3. ЕДИНИЦЫ ИЗМЕРЕНИЯ
Единицы измерения, используемые в настоящем стандарте, соответствуют принятым Международной электротехнической комиссией (ГОСТ 8.417)*.
__________________
* Для потребностей экономики страны.

4. ОПРЕДЕЛЕНИЯ
4.1 Счетчик ватт-часов (счетчик активной энергии) — прибор, предназначенный для измерения активной энергии путем интегрирования активной мощности в зависимости от времени.
4.2 Счетчик вар-часов (счетчик реактивной энергии) — интегрирующий прибор, который измеряет реактивную энергию* в вар-часах или кратных им единицах.
_________________
* Термина «реактивная энергия» нет в МЭС и отсутствуют общие определения реактивной мощности и энергиии для случаев, когда переменные величины несинусоидальные.
По этим причинам настоящий стандарт основывается на следующих применяемых на практике определениях, которые строго подходят только для синусоидальных напряжений, но которые для практических целей являются действительными, когда напряжения и токи близки к синусоидальным.
Реактивная энергия в однофазной цепи — величина, измеряемая идеальным счетчиком ватт-часов, по цепи тока которого проходит ток однофазной цепи, а приложенное напряжение равно по абсолютной величине напряжению на концах однофазной цепи, но со сдвигом на 90 °.
Реактивная энергия в многофазной цепи — алгебраическая сумма реактивных энергий фаз.
Так как применяемые определения реактивной энергии предполагают синусоидальные величины, то индуктивный или емкостной сдвиг в цепи в настоящем стандарте характеризуется коэффициентом «sinj».
4.3 Индукционный счетчик — счетчик, в котором токи, циркулирующие в неподвижных катушках, воздействуют на токи, индуцируемые в подвижном элементе, обычно диске(ах), что и приводит его (их) в движение.
4.4 Многотарифный счетчик — счетчик, снабженный несколькими счетными механизмами, приводимыми в движение в течение строго определенных интервалов времени, которым соответствуют различные тарифы.
4.5 Стационарный счетчик — счетчик, предназначенный для эксплуатации в стационарных условиях на осветительных щитках и подстанциях без механических воздействий вибрации и тряски.
4.6 Трансформаторный счетчик — счетчик, предназначенный для включения через измерительный или измерительные трансформаторы.
4.7 Подвижная часть (ротор) — подвижный элемент счетчика, на который воздействуют магнитные потоки неподвижных катушек и тормозных элементов и который приводит в действие счетный механизм.
4.8 Вращающий элемент — часть счетчика, которая создает вращающий момент, воздействуя своими магнитными потоками на токи, индуцируемые в подвижной части. Вращающий элемент обычно состоит из электромагнитов с устройствами их регулирования.
4.9 Тормозной элемент — часть счетчика, которая создает тормозной момент, воздействуя своим магнитным потоком на токи, индуцируемые во вращающейся подвижной части. Она состоит из одного или нескольких магнитов с устройствами для их регулирования.
4.10 Счетный механизм — элемент счетчика, позволяющий определить значение измеренной величины.
4.11 Емкость учета счетного механизма — время, в течение которого счетный механизм (исходя из нулевого положения) способен считать измеренную энергию при максимальном токе, номинальном напряжении и коэффициенте мощности, равном единице, без повторного прохождения через нулевое положение.
4.12 Цоколь — задняя часть счетчика, служащая для его крепления, на которой установлены стойка, зажимы или зажимная коробка (плата) и кожух.
Для счетчиков, устанавливаемых впотай (утопленно), цоколь может включать также боковые стороны кожуха.
4.13 Контактная плита — основание, имеющее неподвижные пружинящие контакты (гнезда) для фиксации соединительных штырей съемных счетчиков и зажимы для подключения внешних цепей. Оно может быть предусмотрено для установки как одного, так и нескольких счетчиков.
4.14 Кожух — передняя часть корпуса счетчика, изготовленная либо целиком из прозрачного материала, либо из непрозрачного материала с одним или несколькими прозрачными окнами, позволяющими наблюдать за движением подвижной части и считывать показания счетного механизма.
4.15 Корпус — цоколь и кожух в комплекте.
4.16 Стойка — часть счетчика, на которой установлены вращающие элементы, счетный механизм, подшипники подвижной части, обычно и тормозной элемент, а иногда и регулирующее устройство, и электромагниты для переключения тарифов.
4.17 Доступная для прикосновения проводящая часть — токопроводящая часть, к которой можно прикасаться стандартным испытательным пальцем (контактом), на установленном и подготовленном к эксплуатации счетчике.
4.18 Зажим защитного заземления — зажим, соединенный с доступными токопроводящими частями счетчика в целях безопасности.
4.19 Зажимная коробка (плата) — деталь из изоляционного материала, на которой сгруппированы все или часть зажимов счетчика.
4.20 Крышка зажимной коробки (платы) — крышка, закрывающая зажимы счетчика и, обычно, концы внешних проводов или кабелей, присоединенных к этим зажимам.
4.21 Цепь тока — обмотка вращающего элемента и внутренние соединения счетчика, предназначенные для прохождения тока цепи, к которой присоединен счетчик.
Примечание — Если счетчик снабжен встроенным трансформатором тока, цепь тока включает в себя также обмотки этого трансформатора.
4.22 Цепь напряжения — обмотка вращающего элемента и внутренние соединения счетчика, питаемые напряжением цепи, к которой присоединен счетчик.
4.23 Вспомогательная цепь — элементы (обмотки, лампы, контакты и т. п.) и соединения вспомогательного устройства счетчика, предназначенные для присоединения внешнего устройства, часов, реле, счетчика импульсов.
4.24 Номинальный ток* — значение тока, являющееся исходным при установлении требований настоящего стандарта к счетчику.
____________________
* Здесь и далее термины «напряжение» и «ток» относятся к средним квадратическим значениям, если не оговорено иначе.

4.25 Порог чувствительности — наименьшее нормируемое значение тока, при котором начинается непрерывное вращение диска счетчика при номинальных значениях напряжения и частоты и сosj = 1 (sinj = 1).
4.26 Самоход — движение диска счетчика под действием напряжения, поданного на зажимы цепи напряжения, и при отсутствии тока в токовой цепи.
4.27 Максимальный ток* — наибольшее значение тока, при котором счетчик удовлетворяет требованиям настоящего стандарта в отношении точности.
4.28 Номинальное напряжение* — значение напряжения, являющееся исходным при установлении требований настоящего стандарта, если счетчик изготовлен только для одного напряжения.
Для счетчиков реактивной энергии класса точности 3,0
если счетчик изготовлен на диапазон напряжений, отношение между наибольшим и наименьшим значениями которых не превышает 1,3**, то номинальным напряжением должно считаться среднее арифметическое экстремальных значений диапазона;
если счетчик изготовлен на два напряжения, отношение между наибольшим и наименьшим значениями которых превышает 1,3, то оба значения напряжения должны считаться номинальными.
4.29 Номинальная частота тока — частота, являющаяся исходной при установлении требований настоящего стандарта к счетчику.
4.30 Номинальная скорость — число оборотов подвижной части в минуту при нормальных условиях работы счетчика, при номинальном напряжении, номинальном токе и коэффициенте мощности, равном единице.

4.31 Номинальный вращающий момент — номинальное значение вращающего момента, приложенного к подвижной части в состоянии покоя, при нормальных условиях работы счетчика, номинальном токе и коэффициенте мощности, равном единице, в ньютонах на метр (Н·м).
4.32 Постоянная счетчика — величина, выражающая соотношение между учтенной счетчиком энергией и соответствующим числом оборотов подвижной части
в ватт-часах на оборот (Вт·ч/об) — для счетчиков активной энергии;
в вар-часах на оборот (вар·ч/об) — для счетчиков реактивной энергии.
4.33 Передаточное число — величина, обратная постоянной счетчика, выражающая соотношение между числом оборотов подвижной части и энергией, учитываемой счетчиком
в оборотах на киловатт-час [об/(кВт·ч)] — для счетчиков активной энергии;
в оборотах на киловар-час [об/(квар·ч)] — для счетчиков реактивной энергии.
4.34 Нормальная температура — значение температуры окружающей среды, установленное (нормируемое) для нормальных условий.
4.35 Воздушный зазор — кратчайшее расстояние между токопроводящими частями по воздуху.
4.36 Длина пути утечки — кратчайшее расстояние между токопроводящими частями по поверхности изоляции.
4.37 Изоляция

4.37.1 Основная изоляция — изоляция, применяемая к находящимся под напряжением частям, для обеспечения основной защиты от поражения электрическим током.
Примечание — Основная изоляция не обязательно включает изоляцию, используемую исключительно для функциональных целей.
4.37.2 Дополнительная изоляция — независимая изоляция, применяемая в дополнение к основной изоляции для того, чтобы обеспечить защиту от поражения электрическим током в случае нарушения основной изоляции.
4.37.3 Двойная изоляция — изоляция, содержащая как основную, так и дополнительную изоляции.
4.37.4 Усиленная изоляция — одна изоляционная система, примененная к находящимся под напряжением частям, которая обеспечивает степень защиты от поражения электрическим током, эквивалентную двойной изоляции.
Примечание — Термин «изоляционная система» не означает, что изоляция должна быть одной однородной частью. Она может содержать несколько слоев, которые не могут быть испытаны отдельно в качестве дополнительной или основной изоляции.
4.37.5 Счетчик с изолирующим корпусом класса защиты II — счетчик с изолирующим корпусом, в котором защита от поражений электрическим током обеспечивается не только основной изоляцией, но и дополнительными мерами безопасности, такими как наличие двойной или же усиленной изоляции. К этим мерам не относится заземление, и они не зависят от условий установки.
4.38 Тип счетчика — термин, используемый для определения совокупности конкретной конструкции счетчика, имеющей
а) сходные метрологические характеристики;
б) конструктивное подобие элементов, определяющих эти характеристики.
Тип может иметь несколько значений номинального тока и номинального напряжения.
Счетчики обозначаются изготовителем одной или большим числом групп букв или цифр, или комбинацией букв и цифр. Каждый тип имеет только одно обозначение.
Примечание — Данный тип представляют один или несколько образцов счетчиков, предназначенных для проведения испытаний для целей утверждения типа, характеристики которых (номинальные токи и номинальные напряжения) соответствуют значениям, указанным изготовителем.
4.39 Систематическая составляющая относительной погрешности, выраженная в процентах, вычисляется по следующей формуле

Примечание — Так как истинное значение не может быть определено, оно аппроксимируется значением с установленной точностью, которая может быть определена по нормам, согласованным между изготовителем и потребителем, или по национальным стандартам.
4.40 Влияющая величина — любая величина или любой фактор, обычно воздействующие на счетчик извне, способные оказать влияние на его рабочие характеристики.
4.41 Нормальные условия — соответствующий набор влияющих величин и технических характеристик с нормальными значениями, их допусками и нормальными областями, по отношению к которым устанавливается систематическая составляющая относительной погрешности.
4.42 Изменение систематической составляющей относительной погрешности, вызываемое влияющей величиной, — разность между выраженными в процентах значениями погрешности счетчика, когда только одна влияющая величина принимает последовательно два установленных значения, одно из которых является нормальным значением.
4.43 Коэффициент искажения — отношение среднего квадратического значения содержащихся гармоник (получаемого путем вычитания из несинусоидальной переменной величины ее основной составляющей) к среднему квадратическому значению несинусоидальной величины. Коэффициент искажения обычно выражается в процентах.
4.44 Средний температурный коэффициент — отношение изменения погрешности к вызывающему его изменению температуры (в процентах на 1 °С).
4.45 Вертикальное рабочее положение — положение счетчика, при котором ось подвижной части расположена по вертикали.
4.46 Обозначение класса точности — число, равное пределу допускаемой систематической составляющей относительной погрешности, выраженной в процентах, для всех значений тока в диапазоне от 0,1 номинального для счетчиков активной энергии или 0,2 номинального для счетчиков реактивной энергии и счетчиков класса точности 2,5 до максимального тока при коэффициенте мощности, равном единице (в случае многофазных счетчиков — при симметричных нагрузках), при испытании счетчика в нормальных условиях (включая допускаемые отклонения от номинальных значений), установленных в настоящем стандарте.
4.47 Обозначение степени фазового сдвига отдельного вращающего элемента* счетчика реактивной энергии класса точности 3,0 — число, равное номинальному сдвигу фаз между индуцированными током и напряжением потоками в рабочем воздушном зазоре, когда напряжение и ток, приложенные к этому вращающему элементу, находятся в фазе.
____________
* Вращающий элемент здесь включает необходимые вспомогательные резисторы, индуктивности и шунты.
4.48 Первичный счетный механизм — счетный механизм счетчика, подключаемого через измерительные трансформаторы (тока и (или) напряжения), который учитывает коэффициент(ы) трансформации этого (их) измерительного(ых) трансформатора(ов).
Примечание — Значение энергии получают прямым считыванием показаний счетного механизма.
4.49 Вторичный счетный механизм — счетный механизм счетчика, подключаемого через измерительные трансформаторы, который не учитывает коэффициент(ы) трансформации.
Примечание — Значение энергии получают умножением показания счетного механизма на соответствующий коэффициент.
4.50 Смешанный счетный механизм — счетный механизм счетчика, подключаемого через измерительные трансформаторы, который учитывает коэффициент(ы) трансформации измерительного (ых) трансформатора(ов) тока или напряжения, но не учитывает коэффициенты трансформации обоих одновременно.
Примечание — Значение энергии получают умножением показателей счетного механизма на соответствующий коэффициент.
4.51 Типовой представитель — представитель группы счетчиков, планируемых к выпуску или выпускаемых по одному нормативному документу и (или) образующих типоразмерный (параметрический) ряд, по результатам испытаний которого принято оценивать все счетчики, входящие в данную группу.
4.52 Базовая модель — конкретное исполнение счетчика, принятое в качестве представителя для испытаний на надежность и распространения их результатов на один или несколько типов счетчиков, которые изготовляют по единой технологии и которые имеют единое конструктивное решение.

5 ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
5.1 Счетчики активной энергии должны изготовляться классов точности 0,5; 1,0; 2,0 и 2,5*; счетчики реактивной энергии — классов точности 1,5; 2,0 и 3,0. Трансформаторные счетчики активной и реактивной энергии должны быть класса точности 2,0 и более точные.
__________________
* С 01.07.97 выпуск счетчиков класса 2,5 прекращается. Далее по тексту требования относятся к счетчикам, находящимся в эксплуатации до выработки ресурса.
5.2 В зависимости от условий эксплуатации и места размещения счетчики должны изготовляться следующих исполнений и категорий размещения по ГОСТ 15150
а) классов точности 2,0; 2,5 и 3,0;
исполнения УХЛ, категории 4, но для работы при температурах от 0 до 40 °С и относительной влажности воздуха не более 80 % при температуре 25 °С, а для однофазных счетчиков класса точности 2,0 — при температурах от минус 20 до плюс 55 °С;
исполнения Т, категории 3, а для однофазных счетчиков класса точности 2,0 — при температурах от минус 20 до плюс 55 °С;
б) классов точности 0,5; 1,0 и 1,5;
исполнения УХЛ, категории 4.2;
исполнения Т, категории 4.1, но для работы при температуре от 10 до 35 °С и относительной влажности воздуха не более 98 % при температуре 35 °С.
5.3 Стандартные значения номинального тока должны соответствовать указанным в таблице 1.

Таблица 1 — Стандартные значения номинального тока

Включение счетчика
Стандартные значения номинального тока, А

Непосредственное
5; 10; 15; 20, 25; 30; 40; 50; 80; 100

Через трансформатор(ы) тока
0,2; 0,3; 0,6; 1,0; 1,5; 2,0; 2,5; 5,0; 10,0

Счетчик должен быть изготовлен на одно из значений номинального тока, указанного в таблице 1.
5.4 Значения номинального напряжения должны соответствовать указанным в таблице 2.
Таблица 2- Значения номинального напряжения

Значение номинального напряжения, В, для счетчиков

Включение счетчика
активной энергии
реактивной энергии

стандартные
нестандартные
стандартные
нестандартные

Непосредственное
127; 220; 230; 240; 380; 400; 415; 480
100; 110; 120; 200; 277; 290; 420; 500; 600; 660
127; 220; 230; 240; 380; 400; 415; 480
100; 110; 120; 200; 277; 290; 420; 500; 600

Через трансформатор(ы) напряжения
57,7; 63,5; 100; 110; 115; 120; 173; 190; 200

57,7; 63,5; 100; 110; 115; 120; 190; 200

Счетчик должен быть изготовлен на одно из номинальных напряжений, указанных в таблице 2.
Счетчик реактивной энергии класса точности 3,0 может быть изготовлен также на диапазон напряжений или на два напряжения.
5.5 Счетчики должны изготовляться на максимальные токи
при непосредственном включении 200; 250; 300; 400; 500; 600; 700; 800; 900; 1000 % номинального тока;
при включении через трансформатор(ы) тока 120; 125; 150; 200; 300% номинального тока.
5.6 Габаритные и установочные размеры и масса счетчиков должны устанавливаться в стандартах и технических условиях на счетчики конкретных типов. При этом установочные размеры однофазных счетчиков должны быть
от 90 до 110 мм — по горизонтали;
от 120 до 150 мм — по вертикали.
5.7 Счетчики должны обозначаться изготовителем одной или большим числом групп букв и цифр или комбинацией букв и цифр в соответствии с требованиями, установленными в технических условиях на счетчики конкретного типа.
Примеры обозначений счетчиков и расшифровка использованных в них значений букв и цифр приведены в приложении А.

6. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
6.1 Счетчики должны изготовляться в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке. К счетчикам, предназначенным на экспорт, могут предъявляться требования, отличные от установленных в настоящем стандарте, в соответствии с условиями договора.
6.2 Активная и полная мощность, потребляемая каждой цепью напряжения счетчика при нормальной температуре и номинальных напряжении и частоте, не должна превышать значений, указанных в таблице 3.
Таблица 3 — Активная и полная мощность, потребляемая каждой цепью напряжения

Вид счетчика
Активная и полная мощность, потребляемая каждой цепью напряжения, PU , не более, для счетчиков классов точности

0,5
1,0
1,5
2,0
2,5
3,0

Вт
В·А
Вт
В·А
Вт
В·А
Вт
В·А
Вт
В·А
Вт
В·А

Однофазный
активной энергии
3,0
12,0
3,0
12,0


1,3; 2,0*
4,5; 8,0*
2,0
5,5

реактивной энергии










5,0*
10,0*

Трехфазный
активной энергии
2,7;3,0*
8,0; 12,0*
2,7; 3,0*
8,0; 12,0*


1,5;2,0*
6,0; 5,5**; 10,0*



реактивной энергии




2,7
8,0
1,52,0*
5,5; 5,0**; 10,0*


2,0; 5,0*
5,5; 5,0**; 10,0*

____________ * По согласованию с заказчиком. ** Для счетчиков с Uном = 380 B.

6.3 Потребляемая мощность в каждой цепи тока при нормальной температуре и номинальных токе и частоте не должна превышать значений, приведенных в таблице 4 для счетчиков непосредственного включения с максимальным током менее 30 А.
Таблица 4 — Потребляемая мощность в каждой цепи тока

Вид счетчика
Потребляемая полная мощность в каждой цепи тока, В·А, не более, для счетчиков классов точности

0,5
1,0
1,5
2,0
2,5
3,0

Однофазный
активной энергии
6,0
4,0

0,3;2,5*
0,7; 2,5*

реактивной энергии





5,0*

Трехфазный
активной энергии
4,5; 6,0*
2,5; 4,0*

0,6; 1,0**; 2,5*

реактивной энергии


2,3; 2,5*
1,0; 2,5*

1,0; 5,0*

___________ * По согласованию с заказчиком. ** Для двухэлементных счетчиков, разработанных до 01.01.90

Потребляемая полная мощность в каждой цепи тока счетчиков трансформаторного включения не должна превышать значений, указанных в таблице 4, при токе, равном номинальному вторичному току соответствующего трансформатора при нормальной температуре и номинальной частоте счетчика.
Потребляемая полная мощность в каждой цепи тока для счетчиков непосредственного включения с максимальным током 30 А и более должна быть установлена в технических условиях на счетчики конкретного типа.
6.4 Систематическая составляющая относительной погрешности трехфазных счетчиков, нагруженных одинаково в каждой фазе (в дальнейшем — равномерная нагрузка) и при симметричном трехфазном напряжении, приложенном к цепям напряжения (с отклонением не более 2 %), а также однофазных счетчиков не должна превышать пределов Dсд допускаемых значений для соответствующего класса точности, указанных в таблицах 5 и 6 для счетчиков активной энергии и счетчиков реактивной энергии соответственно.
Таблица 5 — Пределы Dсд для счетчиков активной энергии

Значение тока
Коэффициент мощности
Пределы Dсд, %, не более, для счетчиков активной энергии классов точности

cosj
0,5
1,0
2,0
2,5

5 % номинального
1,0
±1,0
±1,5
±2,5

От 10 до 20 % номинального
1,0



±3,5

От 10 % номинального до максимального включ.
1,0
±0,5
±1,0
±2,0

От 20 % номинального
1,0



±2,5

до максимального включ.

10 % номинального
0,5 инд.
±1,3
±1,5
±2,5

10 % номинального
0,8 емк. 0,5 емк.*
±1,3
±1,5

От 20 % номинального до максимального включ.
0,5 инд.
±0,8
±1,0
±2,0
±4,0

От 20 % номинального до максимального включ.
0,8 емк.
±0,8
±1,0

От 20 до 100 % номинального*
0,25 инд.
±2,5
±3,5

0,5 емк.
±1,5
±2,5

_______________ * По требованию заказчика

Примечание — Для счетчиков класса точности 1,0, разработанных до 01.01.85, погрешность при cosj = 0,8 не нормируется, погрешность при токе нагрузки 5% номинального и cosj = 1, а также при токе нагрузки 10 % номинального и cosj = 0,5 не должна превышать 2%

Таблица 6 — Пределы Dсд для счетчиков реактивной энергии

Значение тока
Коэффициент мощности
Пределы Dсд, %, не более, для счетчиков реактивной энергии классов точности

sinj
1,5
2,0
3,0

10 % номинального
1,0
±2,5
±3,0
±4,0

От 20 % номинального до максимального включ.
1,0
±1,5
±2,0
±3,0

От 20 % номинального до максимального включ.
0,5 инд. (или емк.)
±1,5
±2,0
±3,0

6.5 Систематическая составляющая относительной погрешности Dс1 трехфазных счетчиков при наличии тока в одной (любой) из токовых цепей, при отсутствии тока в других токовых цепях (в дальнейшем — неравномерная нагрузка) и при симметричных напряжениях, приложенных к цепям напряжения, не должна превышать пределов Dсд1 допускаемых значений для соответствующего класса точности, указанных в таблице 7.
Таблица 7 — Пределы Dсд1 трехфазных счетчиков

Значение тока
Коэффициент мощности
Пределы Dсд1,%, не более, для счетчиков классов точности

cosj (sinj)
0,5
1,0
1,5
2,0
3,0

Счетчики активной энергии

от 20 до 100 % номинального
1,0
±1,5
±2,0

±3,0

50 % номинального
0,5 инд.
±1,5
±2,0


100 % номинального
0,5 инд.
±1,5
±2,0

±3,0

от 100 % номинального до максимального включ.
1,0



±4,0

Счетчики реактивной энергии

от 20 до 100% номинального
1,0


±3,0
±3,5
±4,0

100 % номинального
0,5 инд. (или емк.)


±3,0
±3,5
±4,0

Примечание — Для трехфазных счетчиков класса точности 1,0, разработанных до 01.07.97, систематическую составляющую относительной погрешности при значении тока, равном 50% номинального, не нормируют.

6.6 Для трехфазных счетчиков активной энергии разность между значениями систематической составляющей относительной погрешности Dср, определенными при неравномерной нагрузке токовых цепей и при равномерной их нагрузке номинальным током при cosj = 1, при номинальном напряжении не должна превышать, по согласованию с заказчиком, следующих значений
±1% — для счетчиков класса точности 0,5;
±1,5% — для счетчиков класса точности 1,0;
±2,5% — для счетчиков класса точности 2,0.
6.7 Функции влияния
6.7.1 Коэффициент KU изменения систематической составляющей относительной погрешности на один процент изменения напряжения не должен превышать значений, указанных в таблице 8.
Таблица 8 — Коэффициент KU

Значение тока
Коэффициент мощности cosj(sinj)
Допускаемый коэффициент KU, %, на один процент изменения напряжения, не более, для счетчиков классов точности

0,5
1,0
1,5
2,0
2,5
3,0

10% номинального
1,0
±0,08
±0,10
±0,125
±0,15
±0,20
±0,20

50 % максимального
1,0
±0,05
±0,07

±0,10
±0,15

50 % максимального
0,5 инд.
±0,07
±0,10

±0,15

От 100 % номинального до максимального включ.
1,0


±0,10


±0,15

Допускаемое изменение напряжения не должно превышать ±10% номинального.
Примечания
1 Счетчик реактивной энергии класса 3,0, изготовленный на диапазоны напряжений, отношение между наибольшим и наименьшим значениями которых не превышает 1,3, должен удовлетворять указанным выше требованиям для каждого из экстремальных напряжений и для их среднего арифметического.
2 Счетчик реактивной энергии класса точности 3,0, изготовленный на два напряжения, отношение между наибольшим и наименьшим значениями которых превышает 1,3, должен удовлетворять указанным выше требованиям для каждого из этих двух напряжений.
6.7.2 Коэффициент Кf изменения систематической составляющей относительной погрешности на один процент изменения частоты не должен превышать значений, указанных в таблице 9.
Таблица 9 — Коэффициент Kf

Значение тока
Коэффициент мощности cosj(sinj)
Допускаемый коэффициент Kf,%, на один процент изменения частоты, не более, для счетчиков классов точности

0,5
1,0
1,5
2,0
2,5
3,0

10% номинального
1,0
±0,14
±0,20
±0,30
±0,30
±0,30
±0,50

50% максимального
1,0
±0,12
±0,16

±0,26
±0,30

50% максимального
0,5 инд.
±0,16
±0,20

±0,30
±0,30

100% номинального
1,0 и 0,5 инд. (или емк.)*


±0,30


±0,50

____________ * Для счетчиков реактивной энергии класса точности 3,0

Допускаемое изменение частоты не должно превышать ±5% номинальной.
6.7.3 Коэффициент Kt изменения систематической составляющей относительной погрешности на один градус изменения температуры при отклонении температуры окружающего воздуха от среднего значения до любой температуры в пределах рабочих температур не должен превышать значений, указанных в таблице 10.
Таблица 10 — Коэффициент Kt

Значение тока
Коэффициент мощности
Допускаемый коэффициент Kt,%, на 1 °С, не более, для счетчиков классов точности

cosj(sinj)
0,5
1,0
1,5
2,0
2,5
3,0

От 10% номинального до максимального включ.
1,0
±0,03
±0,05
±0,07
±0,10; ±0,075*
±0,10
±0,10

От 20% номинального до максимального включ.
0,5 инд.
±0,05
±0,07
±0,10
±0,05 ±0,10*
±0,15
±0,15

_______________ * По требованию заказчика.

Примечание — Для трехфазных счетчиков класса точности 2,0 и 3,0 изготавливаемых с нижним пределом диапазона рабочих температур минус 20 °С, значения допускаемого коэффициента Kt должны быть установлены в технических условиях на счетчики конкретного типа.

6.7.4 Коэффициент Кs изменения систематической составляющей относительной погрешности на один градус наклона не должен превышать значений, указанных в таблице 11.
Таблица 11 — Коэффициент Ks

Допускаемый коэффициент Ks, % на один градус наклона, не более, для счетчиков

Значение тока
Коэффициент мощности
активной энергии классов точности
реактивной энергии классов точности

cosj(sinj)
0,5
1,0
2,0
2,5
1,5
2,0
3,0

5 % номинального
1,0
±0,5
±0,67
±1,00



10 % номинального
1,0



±0,67
±0,67
±1,00
±0,67

100 % номинального
1,0
±0,1
±0,13
±0,17
±0,33

±0,17

Максимальный
1,0
±0,1
±0,13
±0,17
±0,33
±0,17
±0,17
±0,33

Допускаемое отклонение счетчиков от вертикального рабочего положения в любом направлении не должно превышать 3 °.
6.8 Изменение систематической составляющей относительной погрешности, вызванное внешним магнитным полем индукции 0,5 мТл, созданным током одинаковой частоты с частотой напряжения счетчика, при наиболее неблагоприятных фазе и направлении, при номинальном токе, номинальном напряжении и cosj = 1 (sinj = 1) не должно превышать
±3% — для счетчиков классов точности 2,0; 2,5 и 3,0;
±2% — для счетчиков классов точности 1,0 и 1,5;
±1,5% — для счетчиков класса точности 0,5.
6.9 Изменение систематической составляющей относительной погрешности, вызванное магнитным полем вспомогательных устройств многотарифных счетчиков, при токе 5% номинального и cosj = 1 и при токе 10% номинального и sinj = 1 не должно превышать
±0,3% — для счетчиков класса точности 0,5;
±0,5% — для счетчиков класса точности 1,0;
±1,0% — для счетчиков классов точности 1,5; 2,0; 2,5 и 3,0.
6.10 Изменение систематической составляющей относительной погрешности трехфазных счетчиков активной энергии не должно превышать ±1,5% при токах и напряжениях, имеющих последовательность фаз, обратную той, которая указана на схеме включения, равномерной нагрузке и при значениях тока от 50% номинального до максимального и cosj = 1.
При обратном порядке фаз и нагрузке только одного из вращающих элементов током 50% номинального (однофазной нагрузке) и cosj = 1 изменение систематической составляющей относительной погрешности не должно превышать ±2% для счетчиков классов точности 0,5; 1,0 и 2,0, разработанных после 01.07.97.
6.11 Счетчики непосредственного включения должны выдерживать импульс тока, пиковое значение которого в 50 раз больше максимального тока (но не более 7000 А) и который сохраняет значение, в 25 раз превышающее максимальный ток (но не более 3500 А), в течение 1 мс.
Счетчики, предназначенные для подключения к трансформатору тока, должны выдерживать в течение 0,5 с воздействие 20-кратного максимального тока, а также воздействие 30-кратного номинального тока для счетчиков класса точности 3,0 с номинальными токами менее 10 А.
После завершения этого испытания изменение систематической составляющей относительной погрешности счетчика после кратковременного воздействия сверхтока не должно превышать значений, указанных в таблице 12.
Таблица 12 — Изменение систематической составляющей относительной погрешности счетчика после кратковременного воздействия сверхтока

Вид счетчика
Ток, % номинального значения
Коэффициент мощности cosj(sinj)
Допускаемое изменение систематической составляющей относительной погрешности, %, не более, для счетчиков классов точности

0,5
1,0
1,5
2,0
2,5
3,0

Непосредственного включения
100
1

±1,5
±1,5
±1,5
±1,5
±1,5

Подключаемый к трансформатору тока
100
1
±0,3
±0,5
±1,5
±1,0
±1,5
±1,5

Примечание — Для счетчиков классов точности 1,0 и 2,0, подключаемых к трансформатору тока и разработанных до 01.01,80, допускается изменение систематической составляющей относительной погрешности ±1,5%

6.12 Изменение систематической составляющей относительной погрешности счетчика от влияния нагрева (самонагрева) не должно превышать значений, указанных в таблице 13.
Таблица 13 — Изменение систематической составляющей относительной погрешности счетчика от влияния нагрева (самонагрева)

Значение тока
Коэффициент мощности cosj(sinj)
Допускаемое изменение систематической составляющей относительной погрешности, %, не более, для счетчиков классов точности

0,5
1,0
1,5; 2,0; 2,5; 3,0

Максимальное
1
±0,5
±0,7
±1,0

0,5 инд.
±07
±1,0
±1,5

6.13 Изменение систематической составляющей относительной погрешности счетчика от влияния механической нагрузки одно- или многотарифного счетного механизма не должно превышать значений, указанных в таблице 14.

Таблица 14 — Изменение систематической составляющей относительной погрешности счетчика от влияния механической нагрузки

Допускаемое изменение систематической составляющей относительной погрешности, %, не более, для счетчиков

Ток, % номинального
Коэффициент мощности
активной энергии
реактивной энергии

значения
cosj(sinj)
классов точности

0,5
1,0
2,0
2,5
1,5; 2,0; 3,0

5
1
±0,8
±1,5
±2,0

10
1



±2,0
±2,0

6.14 Изменение систематической составляющей относительной погрешности от влияния третьей гармоники в кривой тока*, равного 10% номинального тока, счетчиков активной энергии не должно превышать значений, указанных в таблице 15.
Таблица 15 — Изменение систематической составляющей относительной погрешности от влияния третьей гармоники

Ток, % номинального значения
Коэффициент мощности cosj
Допускаемое изменение систематической составляющей относительной погрешности, %, не более, для счетчиков классов точности

0,5
1,0
2,0; 2,5

100
1
0,5
0,6
0,8

6.15 Самоход. Диск счетчика не должен совершать более одного полного оборота при отсутствии тока в токовой цепи и при любом напряжении от 80 до 110% номинального.
6.16 Порог чувствительности. Диск счетчика должен начать и продолжать непрерывно вращаться при номинальных напряжении, частоте, cosj = 1 (sinj = 1) и токе, не превышающем значений, указанных в таблице 16.

Таблица 16 — Порог чувствительности

Счетчик класса точности
0,5
1,0
1,5
2,0
2,5
3,0

Порог чувствительности,
0,3
0,4
0,5
0,5
1,0
1,0

% номинального тока
0,4*
0,5**

0,45***

_________________ * Для счетчиков, снабженных стопором.

** Для счетчиков, разработанных до 01.01.80.

*** Для однофазных счетчиков по требованию заказчика.

6.17 При нормальных условиях эксплуатации обмотки и изоляция не должны нагреваться до температуры, которая может нарушить работу счетчика. Установившееся превышение температуры над температурой окружающего воздуха не должно превышать следующих значений
60 °С — для обмоток счетчика (50 °С — для обмоток токовых цепей счетчиков реактивной энергии)*;
25 °С — для наружной поверхности корпуса.
6.18 Счетчики в упаковке для перевозки должны выдерживать без повреждений транспортную тряску с ускорением 30 м/с2 при частоте ударов от 80 до 120 в минуту.
6.19 Счетчики в упаковке для перевозки должны выдерживать длительное пребывание при температуре ±50 °С и относительной влажности 98% при температуре 35 °С; счетчики, предназначенные для эксплуатации в районах с тропическим климатом, должны выдерживать пребывание при температурах от минус 50 до плюс 60 °С.
6.20 Детали и узлы счетчиков, предназначенных для эксплуатации в районах с тропическим климатом, в части стойкости к образованию плесневых грибов должны соответствовать требованиям ГОСТ 9.048.
Допустимый рост грибов — 3 балла, т. е. при осмотре невооруженным глазом рост грибов едва виден, но отчетливо виден под микроскопом.
6.21 Изоляция цепей и изоляция между цепями должна выдерживать десятикратное воздействие импульсного напряжения с пиковым значением 6000 В. Такое же воздействие напряжения должна выдерживать изоляция
между соединенными между собой цепями и металлическим корпусом счетчика;
между соединенными между собой цепями и металлическими наружными частями корпуса из изоляционного материала.
6.22 Изоляция между цепями тока и напряжения, которые в рабочем состоянии соединены между собой, а также между цепями тока разных фаз должна выдерживать напряжение 600 В или равное удвоенному номинальному, если оно превышает 300 В.
Изоляция между всеми цепями, за исключением вспомогательных цепей с номинальным напряжением 40 В и ниже этого значения (70 В и ниже этого значения -для счетчиков класса точности 3,0), и стойкой или металлическим корпусом должна выдерживать 2000 В — для счетчиков с номинальным напряжением до 600 В включ. и 3000 В — для счетчиков с номинальным напряжением св. 600 В.
Изоляция всех вспомогательных цепей с номинальным напряжением 40 В и ниже этого значения для всех счетчиков, кроме счетчиков класса точности 3,0, должна выдерживать напряжение 500 В;
с номинальным напряжением 70 В и ниже этого значения для счетчиков класса точности 3,0 — 250 В по отношению к стойке.
6.23 Счетчик, разработанный после 01.07.97, должен выдерживать переменное напряжение 2000 В, приложенное между стойкой и
а) каждой цепью тока, которая в условиях эксплуатации отделена и изолирована от остальных цепей;
б) каждой цепью напряжения (или группой цепей напряжения, имеющих общую точку), которая в условиях эксплуатации отделена и изолирована от остальных цепей;
в) каждой вспомогательной цепью или группой вспомогательных цепей, имеющих общую точку, номинальное напряжение которых выше 40 В;
г) каждой группой обмоток тока и напряжения одного и того же вращающего элемента, которые в условиях эксплуатации соединены вместе, но отделены и изолированы от других цепей.
6.24 Счетчик с изолирующим корпусом класса защиты II, разработанный после 01.07.97, должен выдерживать переменное напряжение с эффективным значением 4000 В, приложенное между «Землей» и соединенными вместе зажимами всех токовых цепей, цепей напряжения и вспомогательных цепей с номинальным напряжением свыше 40 В.
6.25 Изоляция между соединенными вместе электрическими проводящими частями, расположенными внутри корпуса счетчика с изолирующим корпусом класса защиты II, разработанного после 01.07.97, и доступными для прикасания электрически проводящими частями вне корпуса должна выдерживать напряжение 40 В.
6.26 Корпус счетчика должен обеспечивать защиту его от механических воздействий и загрязнений, нарушающих правильность его показаний и удобство отсчета числа оборотов подвижной части.
Корпус счетчика класса точности 0,5 должен обеспечивать установку счетчика в вертикальное рабочее положение с отклонением, не превышающим 0,5°.
6.27 Корпус счетчика должен выдерживать удары моментом силы (0,22±0,05) Н· м, кроме счетчиков, разработанных до 01.07.88.
6.28 Крепление кожуха к цоколю должно предусматривать возможность опломбирования кожуха, при этом не должно быть доступа к измерительному механизму без нарушения пломб.
6.29 Если корпус непрозрачен, то на нем должно быть предусмотрено окно или несколько окон для отсчета показаний счетного механизма и наблюдения за работой подвижной части. Эти окна должны быть закрыты пластинами из прозрачного материала.
Конструкция пластин должна предусматривать невозможность их удаления без нарушения пломб.
6.30 Кожух счетчика с изолирующим корпусом класса защиты II, включая и крышку зажимной коробки счетчика, должен быть прочный, изготовлен полностью из изолирующего материала и должен закрывать все металлические части счетчика, за исключением некоторых мелких деталей, как например, щиток, винты, подвесные скобки, заклепки.
Мелкие детали, расположенные вне изолирующего корпуса и доступные для прикасания, должны быть снабжены дополнительной изоляцией для отделения от частей, находящихся в рабочем состоянии под напряжением и при ослаблении или выходе из строя основной изоляции. В качестве дополнительной изоляции не допускается применять изоляционные свойства лаковых и эмалевых покрытий, хлопчатобумажных и оксидных самоприлипающих пленок или других защитных материалов.
Для зажимных коробок и крышек зажимных коробок достаточно предусмотреть усиленную изоляцию.
6.31 На наружной стороне кожуха или крышки зажимной коробки трансформаторного счетчика со вторичным или смешанным счетным механизмом должен быть прикреплен съемный щиток для указания коэффициентов трансформации измерительных трансформаторов. Крепление щитка должно предусматривать возможность его опломбирования.
6.32 Каждый счетчик должен быть снабжен схемой включения. На схемах для трехфазных счетчиков должна быть указана последовательность фаз, для которой изготовлен счетчик.
Если зажимы счетчика имеют обозначения, то те же обозначения должны быть нанесены на схеме.
Схемы подключения счетчиков должны быть приведены в технических условиях или в эксплуатационной документации на счетчики конкретных типов.
6.33 Зажимы должны обеспечивать подключение как медных, так и алюминиевых проводов. Соединения зажимов цепей тока и напряжения должны быть разъемными и находиться вне кожуха (в зажимной коробке).
Отверстия для зажима проводов токовой цепи должны быть диаметром не менее 4,2 мм для счетчиков с максимальным током до 40 А включительно и диаметром от 5 до 8 мм — для счетчиков с максимальным током свыше 40 до 100 А, а свыше 100 А — не менее 11,5 мм.
Все зажимы счетчиков, предназначенные для работы с измерительными трансформаторами напряжения, должны быть раздельными и иметь отверстия диаметром не менее 4,2 мм.
Зажимы трехфазных трансформаторных счетчиков для включения с трансформаторами тока должны обеспечивать раздельное включение цепи напряжения и цепи тока. Диаметр отверстий зажимов для этой цепи должен быть не менее 3,5 мм.
6.34 Воздушные зазоры и пути утечки между металлическими частями, находящимися в зажимной коробке, а также между зажимами и находящимися вблизи от них металлическими частями, должны быть не менее значений, указанных в таблице 17, для напряжений, прикладываемых к зажимам при работе в нормальных условиях.

Таблица 17 — Воздушные зазоры и пути утечки

Номинальное напряжение, В
Воздушный зазор, мм
Путь утечки, мм

До
25
включ.
1
1

От
26
»
60
»
2
2

»
61
»
250
»
3
3

»
251
»
450
»
3
4

»
451
»
660
»
4
6

При выборе значений воздушных зазоров и путей утечки номинальное напряжение токовой цепи принимают равным номинальному напряжению соответствующей цепи напряжения.
Соседние зажимы, находящиеся под разными напряжениями, должны быть защищены от случайных коротких замыканий. Защита может осуществляться с помощью изолирующих перегородок.
Напряжения на зажимах, принадлежащих одной и той же токовой цепи, принимают равными.
Воздушный зазор между металлической крышкой зажимов и верхней поверхностью витков, если они установлены на проводе максимально допустимого диаметра, должен быть не менее значений, приведенных в таблице 17.
Допускается по требованию заказчика взамен требований к воздушным зазорам и путям утечки нормировать сопротивление изоляции всех цепей счетчика, изолированных по постоянному току, по отношению к металлическому корпусу или металлическим наружным частям корпуса из изоляционного материала по ГОСТ 22261 при положении винтов зажимов, соответствующем закреплению провода максимально допустимого диаметра.
Для счетчиков, изготовленных на номинальные напряжения более 500 В, требования к сопротивлению изоляции должны быть установлены в технических условиях на счетчики конкретного типа.
6.35 Видимое движение диска счетчика должно происходить слева направо.
Направление вращения должно быть указано хорошо видимой стрелкой.
Для облегчения счета оборотов на ребре и (или) верхней поверхности диска должны быть нанесены хорошо видимые отметки. Для стробоскопических или иных испытаний могут быть нанесены и другие отметки, однако они должны быть размещены так, чтобы не препятствовать использованию основной видимой отметки для фотоэлектрического счета оборотов.
6.36 Счетный механизм счетчика должен быть стрелочной или барабанной конструкции.
6.37 Счетчики должны давать показания расхода энергии в киловатт-часах (киловар-часах) непосредственно или при умножении показания счетного механизма на 10n, где n — целое число.
Трансформаторные счетчики со вторичным или смешанным счетным механизмом должны удовлетворять этому требованию при учете энергии, соответствующей номинальным вторичным токам и напряжениям трансформаторов, коэффициенты трансформации которых они не учитывают.
6.38 Единица измерения энергии у счетных механизмов барабанной конструкции должна быть указана на щитке около ряда барабанов. В счетных механизмах этого типа только последний барабан, т. е. барабан, расположенный с правого края, может двигаться непрерывно.
У счетных механизмов стрелочной конструкции единица измерения должна быть указана на щитке около циферблата, показывающего единицы в виде «1 кВт·ч/деление» или «1 МВт· ч/деление». Около остальных циферблатов должны быть указаны числа киловатт-часов или мегаватт-часов, соответствующих одному делению.
Например, для счетчика, показывающего в киловатт-часах, циферблат, показывающий единицы, должен иметь отметку «1 кВт·ч /деление», а циферблат, находящийся слева от показывающего единицы, должен иметь отметку «10», «100», «1000» и т. д.
6.39 Емкость учета счетного механизма при работе счетчика при максимальном токе, номинальном напряжении и cosj = 1 (sinj = 1) должна быть не менее 1500 ч.
По требованию заказчика допускается устанавливать значение емкости учета, отличное от указанного.
6.40 Изменение показаний счетного механизма на одну цифру первого указателя (барабана) справа должно продолжаться не более 15 мин при максимальном токе, номинальном напряжении и cosj = 1 (sinj = 1) .
6.41 Цифры, циферблаты или окаймление окна для долей киловатт-часа (киловар-часа) должны быть иного цвета, чем для целых киловатт-часов (киловар-часов), и отделены запятой.
По требованию заказчика на наиболее быстро вращающемся барабане или циферблате наиболее быстро движущейся стрелки счетчика должны быть деления и дольные деления, кратные десяти.
6.42 У счетного механизма многотарифного счетчика должен быть указатель работающего тарифа.
При работе льготного тарифа реле переключения тарифов должно находиться под напряжением.
6.43 Конструкция счетчика должна обеспечивать возможность извлечения из него счетного механизма, подвижной части и опор без изменения взаимного расположения других частей счетчика.
6.44 Стопор обратного хода, устанавливаемый на счетчики реактивной энергии и, по требованию заказчика, на трехфазные счетчики активной энергии и однофазные счетчики, не должен допускать вращения диска справа налево.
6.45 Счетчик должен иметь регулирующие органы для регулирования тормозного момента, для регулирования счетчика при малой нагрузке, для изменения сдвига фаз магнитных потоков.
6.46 Регулирующие органы должны обеспечивать в отрегулированном счетчике изменение скорости вращения подвижной части в пределах, приведенных в таблице 18.
Таблица 18 — Пределы регулирования скорости вращения

Средство регулирования или условие
Значение тока
Коэффициент мощности cosj(sinj)
Минимальные пределы регулирования скорости вращения подвижной части, %, для счетчиков

активной энергии
peaктивной энергии

классов точности

0,5
1,0
2,0
2,5
1,5
2,0
3,0

Тормозной элемент
50% максимального
1
±2
±2
+4 -6 ±4*
+4 -6 ±4*
+2 -3 ±2*
+4 -6 ±4*
+4 -6

Малая на грузка
5% номинального
1
±4 ±2*
±4 ±2*
±4



10% номинального
1



±4
±4
±4
±4

Индуктивная нагрузка
50% номинального
0,5 инд.
±1
±1


±1

50 % максимального
0,5 инд.


±1
±1

±1
±1

________________ * По согласованию с заказчиком.

Примечание — Допускается по согласованию с заказчиком выпуск счетчиков, у которых отсутствует запас регулирования внутреннего угла сдвига фаз

6.47 Требования к надежности
6.47.1 Счетчики относятся к ремонтируемым, не восстанавливаемым на объекте изделиям.
6.47.2 Показатели безотказности счетчиков в нормальных условиях применения должны быть установлены в технических условиях на счетчики конкретного типа.
6.47.3 Средний срок службы счетчиков до первого капитального ремонта Тсл — не менее 32 лет.
6.47.4 Межповерочный интервал периодической поверки счетчиков — не менее
6 лет для трехфазных счетчиков;
16 лет для однофазных счетчиков;
4 лет для счетчиков класса точности 0,5.
6.48 Комплектность
6.48.1 В комплект к счетчику должны входить крышка зажимной коробки и упаковочная коробка.
Допускается групповая потребительская тара без индивидуальных упаковочных коробок.
К счетчику прилагают эксплуатационную документацию по ГОСТ 2.601.
Эксплуатационная документация по договору с заказчиком может поставляться в количестве одного экземпляра на партию счетчиков.
6.49 Маркировка
6.49.1 На каждом счетчике должна быть приведена следующая информация
а) название или торговый знак изготовителя и, если требуется, место изготовления;
б) обозначение типа и, если требуется, место для простановки знака приемочного испытания;
в) единица измерения электрической энергии.
Обозначения единиц измерения электрической энергии, установленных в 6.35, должны соответствовать требованиям ГОСТ 25372;
г) если требуется, для счетчиков реактивной энергии класса точности 3,0, количество часов, на которое рассчитана работа счетного механизма;
д) число фаз и число проводов цепи, для которой счетчик предназначен (например, однофазная двухпроводная, трехфазная трехпроводная, трехфазная четырехпроводная); эта маркировка может быть заменена графическими обозначениями по ГОСТ 25372;
е) заводской номер и год изготовления. Если заводской номер указан на щитке, прикрепленном к кожуху, номер должен быть указан также на цоколе или стойке счетчика;
ж) номинальное напряжение по одной из следующих форм
число элементов, если их больше одного, и напряжение на зажимах цепи(ей) напряжения счетчика;
номинальное напряжение системы или вторичное напряжение измерительного трансформатора, для присоединения к которому счетчик предназначен.
Примеры маркировки напряжения приведены в таблице 19;

Таблица 19 — Примеры маркировки напряжения

Счетчик
Напряжение на зажимах цепи (цепей) напряжения или диапазон напряжений, В, и число цепей напряжения
Номинальное напряжение системы, В

На номинальное напряжение 220 В для работы в однофазной двухпроводной цепи
220
220

На номинальное напряжение 127 В для работы в однофазной трехпроводной цепи (127 В по отношению к средней точке)
254
254

Двухэлементный на номинальное напряжение 380 В для работы в трехфазной трехпроводной цепи (380 В между фазами)
2х380
3х380

Трехэлементный на номинальное напряжение 220 В для работы в трехфазной четырехпроводной цепи (220 В фаза-нейтраль)
3х220(380)
3х220(380)

На диапазон напряжений от 110 до 143 В для работы в однофазной двухпроводной цепи*
110-143
110-143

На номинальные напряжения 127 и 220 В для работы в однофазной двухпроводной цепи*
127 и 220
127 и 220

__________ * Для счетчиков реактивной энергии класса точности 3,0

з) номинальный ток и максимальный ток, выраженные, например 10-40 А или 10(40) А для счетчиков непосредственного включения с номинальным током 10 А и максимальным током 40 А;
для трансформаторных счетчиков номинальный вторичный ток трансформатора(ов), к которому должен подключаться счетчик, например, «+ /5 А»;
номинальный и нормируемый максимальные токи счетчика могут быть включены в обозначение типа;
и) номинальная частота, Гц;
к) постоянная счетчика в виде
W·h/r — для счетчиков активной энергии,
var·h/r- для счетчиков реактивной энергии или передаточное число счетчика в виде
r/(kW·h) или 1kW·h=+ оборот диска — для счетчиков активной энергии,
r/(kvar·h) или 1kvar·h = … оборот диска — для счетчиков реактивной энергии.
Для счетчиков, разработанных до 01.01.82, допускается передаточное число указывать надписью
1 кВт· ч = +оборот диска;
1 квар· ч = +оборот диска;
л) обозначение класса точности счетчика.
Класс точности счетчика должен соответствовать ГОСТ 8.401 и обозначаться в виде чисел, например, 0,5 или 1, взятых в кружок, или в виде «C1.0,5», «C1.1» по ГОСТ 25372.
При отсутствии обозначения класса точности счетчик должен считаться счетчиком класса точности 2;
м) если требуется, для счетчиков реактивной энергии класса точности 3,0, классификация по степени фазового сдвига, выраженная 0; 90 или 60;
н) нормальная температура, если она отличается от 20 °С;
о) наличие стопора обратного хода (если таковой имеется);
п) обозначение настоящего стандарта;
р) Знак утверждения типа средств измерений для счетчиков, внесенных в Государственный реестр.
Порядок нанесения Знака утверждения типа счетчика, внесенного в Государственный реестр, — но нормативному документу.
с) обозначение деталей подвеса (опор) подвижного элемента счетчика — по ГОСТ 25372;
т) знак двойного квадрата для помещенных в изолирующий корпус счетчиков класса защиты II — по ГОСТ 25372.
Допускаются дополнительные надписи, место нанесения и текст которых должны указываться в технических условиях.
Информация по пунктам а), б) и д) может быть помещена на наружном специальном щитке, постоянно прикрепленном к кожуху или крышке счетчика.
Информация по пунктам в), г), е) — т) должна быть нанесена на щитке, предпочтительно находящемся внутри счетчика, который может быть прикреплен, например, к счетному механизму счетчика. Маркировка должна быть несмываемой, отчетливой и хорошо видимой с наружной стороны счетчика.
При специальном исполнении счетчика (например, счетчик со стопором обратного хода или многотарифный счетчик с напряжением переключающего электромагнита, отличающимся от номинального) это должно быть указано на щитке счетного механизма или на специальном щитке.
6.49.2 Маркировка счетчиков должна осуществляться в соответствии с требованиями настоящего стандарта.
К маркировке счетчиков, предназначенных на экспорт, допускается предъявлять требования, отличные от установленных в настоящем стандарте, в соответствии с условиями договора.
6.49.3 Условные обозначения счетчиков должны соответствовать требованиям ГОСТ 25372 и содержать обозначения, приведенные в приложении А, или другие обозначения в соответствии с требованиями, установленными в технических условиях на счетчики конкретных типов.
Для счетчиков исполнения УХЛ допускается не указывать исполнение и категорию размещения.
6.49.4 У трехфазных счетчиков номинальные ток и напряжение должны указываться в виде произведения числа фаз на номинальное значение тока или напряжения, например 3х5 А; 3х220 В.
У трехэлементных счетчиков для работы в трехфазной четырехпроводной цепи должны указываться как фазовые, так и линейные напряжения, отделяемые друг от друга косой чертой, например, 3х220/380 В; допускается 3х380/220 В.
Если счетчик учитывает энергию через измерительные трансформаторы, коэффициенты трансформации которых учтены постоянной счетчика, то их коэффициент(ы) трансформации должен быть также указан.
Могут быть использованы также стандартные обозначения (см. ГОСТ 25372).
У трансформаторных счетчиков с максимальным током 125% номинального и первичным счетным механизмом вместо номинальных значений тока и напряжения должны указываться коэффициенты трансформации измерительных трансформаторов, для работы с которыми предназначен счетчик, например
В или 3х6000/100 В; А или 3х200/5 А
У трансформаторных счетчиков с максимальным током 125% номинального и смешанным счетным механизмом должны указываться номинальный вторичный ток и номинальное вторичное напряжение измерительных трансформаторов, коэффициенты трансформации которых не учитываются счетным механизмом, и коэффициент трансформации, учитываемый счетным механизмом, например
3·100 В или 3х100 В; А или 3х200/5 А
У трансформаторных счетчиков с максимальным током 125% номинального и вторичным счетным механизмом должны указываться номинальные вторичный ток и напряжение измерительных трансформаторов, например
3·100 В или 3х100 В; 3·1А или 3х1А.
У трансформаторных счетчиков с максимальным током, превышающим 125 % номинального, кроме номинального вторичного тока или коэффициента трансформации измерительных трансформаторов тока, должны указываться значения номинального и максимального токов счетчика, например
3·1(0,3-1,2)А или 3х1(0,3-1,2)А; А или 3х(200/5)(1,5-6)А
6.49.5 Значение максимального тока указывают непосредственно после номинального, например
5-20 А или 5(20) А — для однофазных счетчиков; 3х5-10 А или 3х5(10) А — для трехфазных счетчиков.
6.49.6 Надписи допускается делать как на щитке счетного механизма и на специальном щитке, прикрепленном к лицевой поверхности кожуха или крышки, так и непосредственно на лицевой поверхности кожуха или крышки, за исключением надписей, указанных в 6.49.1 в), г), е) — т), которые обязательно должны указываться на щитке счетного механизма.
Надписи должны быть нанесены на языке страны, эксплуатирующей счетчики, или языке, указанном в договоре.
Допускается наносить знак Государственного реестра только на эксплуатационной документации.
6.49.7 На съемных щитках трансформаторных счетчиков со вторичным или смешанным счетным механизмом должны быть надписи «N + «, «Тр-р тока», «Тр-р напряж.», «К … » (множитель трансформаторов, равный произведению коэффициентов трансформации).
6.49.8 Надписи на щитках должны выполняться шрифтом по ГОСТ 26.020, ГОСТ 26.008.
Для счетчиков, произведенных до 01.01.82, допускаются надписи на щитках, выполненные по ГОСТ 2930.
6.49.9 На счетчике или съемном щитке горизонтально расположенной стрелкой должно быть указано направление движения диска, при котором показания счетного механизма увеличиваются.
6.49.10 На крышке зажимной коробки счетчика должна быть нанесена или к ней должна быть надежно прикреплена схема включения счетчика в соответствии с 6.32.
У счетчиков, имеющих зажимы для заземления, на этой схеме должен быть знак заземления корпуса.
6.49.11 Маркировка потребительской и транспортной тары — по ГОСТ 9181, ГОСТ 26828, ГОСТ 14192 и техническим условиям на счетчики конкретных типов.
6.50 Упаковка
6.50.1 Упаковка счетчиков должна осуществляться в соответствии с требованиями ГОСТ 9181, ГОСТ 22261, настоящего стандарта и технических условий на счетчики конкретного типа.
К упаковке счетчиков, предназначенных на экспорт, допускается предъявлять требования, отличные от установленных в настоящем стандарте, в соответствии с условиями договора.

7. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
7.1 Металлический цоколь или металлический корпус счетчика должен иметь зажим защитного заземления, если номинальное напряжение по отношению к земле превышает 250 В.
Заземление цоколя счетчика, предназначенного для эксплуатации в условиях тропического климата, должно выполняться по ГОСТ 15151.
Требования к зажимам заземления и место расположения их для всех исполнений счетчиков — по ГОСТ 15151.
Зажимы, подлежащие заземлению, должны иметь условное графическое обозначение .
Зажим защитного заземления (при наличии) должен иметь электрически проводящее соединение с доступными для прикасания металлическими частями, не находящимися под напряжением;
по возможности быть частью цоколя счетчика;
предпочтительно быть расположенным вблизи зажимной платы.
Все части каждого зажима должны быть сконструированы таким образом, чтобы в результате соприкасания с любой другой металлической частью опасность коррозии была сведена к минимуму.
После установки ослабление присоединения зажима защитного заземления без применения инструмента или какого-либо аналогичного приспособления должно быть невозможно.
7.2. Металлические детали в зажимной коробке при разности потенциалов между ними свыше 40 В должны быть разделены между собой изолирующими перегородками.
7.3 Все зажимы, находящиеся в зажимной коробке, должны закрываться крышкой, приспособленной для опломбирования. Крышка зажимной коробки должна закрывать нижние винты крепления счетчика к щиту, а также подходящие к счетчику провода не менее чем на 25 мм.
В счетчике, установленном на щите, должен быть исключен доступ к зажимам без повреждения пломб или крышки зажимной коробки.
Электрические соединения должны быть сконструированы таким образом, чтобы контактное давление не передавалось через изоляционный материал.
Возможность соприкасания зажимов, винтов крепления проводов, а также внешних и внутренних проводов с металлической крышкой зажимной коробки должна быть предотвращена.
7.4 Эквивалентный (по энергии) уровень звука, производимого работающим однофазным счетчиком, на расстоянии 1 м от счетчика не должен превышать 27 дБ·А для счетчика класса точности 2,0 и 30 дБ·А для счетчика класса точности 2,5.
7.5 Зажимная плата, крышка зажимной коробки и корпус счетчика должны обеспечивать защиту от распространения огня. Указанные части счетчика не должны воспламеняться при перегреве счетчика, находящегося под напряжением в рабочем состоянии.

8. ПРАВИЛА ПРИЕМКИ
8.1 Счетчики должны подвергаться испытаниям
для целей утверждения типа;
на соответствие утвержденному типу;
приемо-сдаточным;
периодическим;
типовым;
на надежность.
Поверку счетчиков следует проводить по ГОСТ 8.259.
8.2 Порядок проведения испытаний для целей утверждения типа и на соответствие утвержденному типу счетчика — по нормативному документу.
8.3 Приемо-сдаточным испытаниям следует подвергать каждый счетчик на соответствие требованиям 6.4; 6.5; 6.15; 6.16; 6.22-6.25; 6.32; 6.35-6.38; 6.41; 6.42; 6.44; 6.48 и 7.1.
Правила проведения приемо-сдаточных испытаний — по ГОСТ 22261 методом сплошного контроля.
8.4 Периодическим испытаниям следует подвергать не менее двух счетчиков из числа прошедших приемо-сдаточные испытания на соответствие всем требованиям настоящего стандарта, кроме 6.14; 6.20; 6.27; 6.47; 7.5 и раздела 12.
Периодические испытания допускается проводить на типовых представителях счетчиков.
Правила проведения периодических испытаний — по ГОСТ 22261.
8.5 Типовые испытания следует проводить во всех случаях, когда вносятся изменения в конструкцию, материалы или технологию изготовления, влияющие на метрологические и технические характеристики или работоспособность счетчиков.
Типовым испытаниям следует подвергать не менее трех образцов счетчиков.
Типовые испытания должны проводиться по программе, утвержденной руководителем предприятия-изготовителя и согласованной с предприятием-разработчиком конструкторской документации.
Объем типовых испытаний должен определяться характером изменений, вносимых в конструкцию счетчиков или технологию их изготовления.
Результаты типовых испытаний должны быть оформлены актом и утверждены руководителем предприятия-изготовителя.
8.6 При получении неудовлетворительных результатов при периодических или типовых испытаниях хотя бы по одному из требований настоящего стандарта проводят повторные испытания удвоенного числа счетчиков. Результаты повторных испытаний являются окончательными.
Допускается повторные испытания счетчиков проводить по пунктам несоответствия.
8.7 Испытания счетчиков на влияние третьей гармоники в кривой тока (6.14), на грибостойкость (6.20), ударопрочность корпуса (6.27), невоспламеняемость (7.5) следует проводить на счетчиках, представляемых на испытания для целей утверждения типа, или на счетчиках из установочной серии; при серийном производстве — при изменении материала, влияющего на указанные требования к счетчику.
Испытания на грибостойкость следует проводить на счетчиках тропического исполнения.
8.8 Правила проведения испытаний счетчиков на надежность и условия приемки.
8.8.1 Контрольные испытания счетчиков на безотказность (6.47.2) следует проводить
на установочной серии или на счетчиках первого года выпуска;
после модернизации счетчика, влияющей на безотказность;
при серийном производстве счетчиков — на базовой модели с периодичностью, установленной в технических условиях на счетчики конкретных типов.
Контрольные испытания счетчиков на безотказность следует проводить одноступенчатым методом с ограниченной продолжительностью испытаний без замены и восстановления счетчиков по планам, приведенным в ГОСТ 27.410 для счетчиков крупносерийного и массового производства и в технических условиях на счетчики конкретных типов мелкосерийного и среднесерийного производства.
8.8.2 Контроль среднего срока службы счетчиков (6.47.3) следует проводить сбором и обработкой статистических данных, полученных в условиях эксплуатации по планам, приведенным в ГОСТ 27.410 и в технических условиях на счетчики конкретных типов.
8.8.3 Контролируемыми параметрами, по которым определяют отказы, являются требования 6.4 при значениях токов нагрузки, установленных в технических условиях на счетчики конкретных типов, и 6.15; 6.16.
8.9 После проведения периодических и типовых испытаний и контрольных испытаний на надежность счетчики должны быть вновь подвергнуты приемо-сдаточным испытаниям после восстановления и ремонта.

9. МЕТОДЫ ИСПЫТАНИЙ
9.1 Испытания счетчика следует проводить одним из трех методов
ваттметра и секундомера, при котором следует определять действительное значение электрической энергии, вызвавшей вращение диска счетчика на заданное число оборотов, по показаниям ваттметра и секундомера и сравнивать его со значением энергии, измеренной счетчиком (с учетом номинальной постоянной счетчика);
образцового счетчика, при котором следует сравнивать показания поверяемого счетчика с показаниями образцового счетчика. Последний допускается включать через измерительные трансформаторы тока и напряжения;
длительных испытаний (контрольной станции), при котором следует сравнивать показания поверяемого счетчика с показаниями образцового счетчика того же типа, который включают в цепи поверяемых счетчиков и погрешности которого должны быть известны, а поправки должны вводиться при сравнении показаний.
9.2 Условия проведения испытаний
а) кожух счетчика должен быть установлен;
б) для счетчика с барабанным счетным механизмом при нагрузках токами до 10% номинального при cosj= 1 (sinj = 1) и до 20% номинального при cosj= 0,5 (sinj = 0,5) должен вращаться толькo наиболее быстро вращающийся барабан;
в) до начала испытаний продолжительность нахождения под напряжениeм цепей напряжения счетчика при проведении испытаний для целей утверждения типа, на соответствие утвержденному типу, периодических и типовых должна быть, ч, не менее
4 — для счетчика класса точности 0,5;
2 — для счетчика класса точности 1,0;
1 — для счетчика классов точности 1,5; 2,0; 2,5 и 3,0.
г) перед определением погрешностей в целях прогрева измерительного механизма счетчик должен находиться не менее 15 мин под номинальным напряжением и номинальным током. Счетчик активной энергии при этом должен работать при cosj = 1, а счетчик реактивной энергии при sinj = 1.
При этом допускается проводить проверку правильности работы счетного механизма;
д) дополнительно для трехфазных счетчиков
порядок чередования фаз должен соответствовать порядку, указанному на схеме включения;
напряжения и токи должны быть практически симметричными — отрегулированными в соответствии с таблицей 20;
Таблица 20 — Симметрия напряжений и токов

Условие регулирования
Для счетчиков классов точности

0,5
1,0; 1,5; 2,0; 2,5; 3,0

Отклонение любого из фазовых или линейных напряжений от их среднего значения, %, не более
±0,5
±1,0

Отклонение любого из токов от среднего значения, %, не более
±1,0
±2,0

Сдвиг фаз токов и соответствующих им фазовых напряжений, независимо от значения коэффициента мощности, не должен отличаться друг от друга более чем
±2 °
±2 °

е) нормальные условия испытаний при разных методах проверки указаны в таблице 21.
Относительная влажность окружающего воздуха и атмосферное давление по ГОСТ 22261.
9.3 Проверка отсутствия внешнего магнитного поля при проведении испытаний счетчиков (9.2, таблица 21) должна проводиться следующим способом.
Для однофазных счетчиков сначала должна быть определена систематическая составляющая относительной погрешности при подключении счетчика к сети в соответствии со схемой включения, а затем следует повторить определение погрешности при одновременной перемене присоединительных проводов как токовой цепи, так и цепи напряжения. Вследствие неизвестного фазового положения внешнего магнитного поля испытание должно проводиться при номинальных напряжении, частоте и токах 10% номинального и коэффициенте мощности, равном единице; 20% номинального и коэффициенте мощности, равном 0,5.
Значение изменения систематической составляющей относительной погрешности в процентах вычисляется как половина разности двух полученных результатов измерений.
Для трехфазных счетчиков необходимо провести три измерения при симметричной нагрузке током 10% номинального и коэффициенте мощности, равном единице.
После каждого измерения должно быть изменено подключение токовых цепей и цепей напряжения на 120 ° при неизменной последовательности фаз.
Значение изменения систематической составляющей относительной погрешности в процентах вычисляется как наибольшая разность между определенными указанным способом погрешностями и их средним значением.
9.4 Проверка правильности работы счетного механизма (соотношения между числом оборотов подвижной части счетчика и показаниями счетного механизма) (6.37) должна проводиться одним из следующих методов
при заданном значении тока систематическая составляющая относительной погрешности счетчика, определенная методом длительных испытаний, должна совпадать с погрешностью, определенной методом ваттметра и секундомера или методом образцового счетчика, т.е. кратковременным испытанием;
при заданном значении тока, номинальных напряжении и частоте счетчик должен проработать в течение заданного интервала времени.
Произведение средней мощности нагрузки на время работы счетчика должно равняться разности показаний счетного механизма в начале и конце работы.
Допускается постоянную счетчика проверять путем счета числа оборотов диска за время изменения показаний счетного механизма на один знак низшего разряда.
9.5 Образцовые средства измерений, применяемые для поверки счетчиков методами ваттметра и секундомера и образцового счетчика, должны обеспечивать определение действительного значения энергии с погрешностью, не превышающей 1/4 допускаемой систематической составляющей относительной погрешности поверяемых счетчиков.
При определении соотношения 1/4 суммарную погрешность образцовых средств измерений следует определять как квадратный корень из суммы квадратов погрешностей отдельных образцовых средств измерений.
Систематические составляющие относительных погрешностей образцовых счетчиков, используемых при методе длительных испытаний (контрольной станции), следует определять любым из указанных в 9.1 методов, как среднее арифметическое не менее пяти измерений.
9.6 Проверку счетчиков по 5.6; 5.7; 6.26; 6.28-6.33; 6.34 (в части воздушных зазоров); 6.35; 6.36; 6.38; 6.41; 6.43; 6.45; 6.48-6.50; 7.1-7.3 следует проводить внешним осмотром и сличением с рабочими чертежами, утвержденными в установленном порядке, измерением размеров мерительным инструментом, обеспечивающим необходимую точность.

Таблица 21 — Нормальные условия испытаний при разных методах проверки

Влияющая
Нормальное
Метод испытаний

величина
значение влияющей
ваттметра и секундомера
образцового счетчика
длительных испытаний (контрольной станции)

величины или
Допускаемые отклонения для счетчиков классов точности

нормированное условие
0,5
1,0
1,5; 2,0; 2,5; 3,0
0,5
1,0
1,5; 2,0; 2,5; 3,0
0,5
1,0
1,5; 2,0; 2,5; 3,0

Температура окружающей среды
Нормальная температура 20 °С1)
±1 °С
±3 °С (±2 °С)
±3 °С (±2 °С)
±1 °С
±3 °С (±2 °С)
±3 °С (±2 °С)
±5 °С (±1 °С)
°С (±2 °С)
°С (±2 °C)

Рабочее положение
Вертикальное рабочее положение2)
±0,5 °
±1,0 ° (±0,5 °)
±1,0 ° (±0,5 °)
±0,5 °
±1,0 ° (±0,5 °)
±1,0 ° (±0,5 °)
±0,5 °
±1,0 ° (±0,5 °)
±1,0 ° (±0,5 °)

Напряжение
Номинальное напряжение Uном3)
±0,5%
±1,0%
±1,0%
±1,0% (±0,5%)
±1,0%
±1,0%
±2,0% (±0,5%)
±2,0% (±1,0%)
±2,0% (±l,0%)

Частота
Номинальная частота fном
±0,2%
±0,5% (±0,3%)
±0,5%
±0,5% (±0,2%)
±0,5% (±0,3%)
±0,5%
±0,5% (±0,2%)
±1,0% (±0,3%)
±1,0% (±0,5%)

Форма
Синусоидальные
Коэффициент нелинейных искажений, менее чем

кривой
напряжение и ток
2%
5% (2%)
5% (3%)
2%
5% (2%)
5% (3%)
5% (2%)
5% (2%)
5% (3%)

Магнитная индукция
Магнитная индукция,
Значение индукции, которое вызывает изменение погрешности (счетчика) не более чем на

внешнего поля при номинальной частоте
равная нулю
0,1%
0,2%
0,3%
0,1%
0,2%
0,3%
0,1%
0,2%
0,3%

1) Если испытания проводят при температуре, отличающейся от нормальной с учетом допускаемых отклонений, результаты могут быть скорректированы введением поправок, учитывающих среднее изменение систематической составляющей относительной погрешности Dct от изменения температуры. Среднее изменение на каждой поверяемой нагрузке должно быть определено не менее чем на 20 счетчиках. 2) Вертикальное рабочее положение в соответствии с 6.7.4 и 6.26. Конструкция и исполнение счетчика должны быть такими, чтобы обеспечивалось точное вертикальное положение (в двух перпендикулярных вертикальных плоскостях «лицевая — задняя» и «левая сторона — правая сторона»), когда а) цоколь счетчика опирается на вертикальную стену; б) опорная грань (например, нижний край зажимной платы) или контрольная линия, нанесенная на корпус счетчика, горизонтальны. 3) Для счетчиков реактивной энергии класса точности 3,0, изготовленных на диапазон напряжений (см. 5.4; 6.7.1), пределы допускаемой систематической составляющей относительной погрешности распространяются на все напряжения в пределах диапазона. Для счетчиков реактивной энергии класса точности 3,0, изготовленных на два номинальных напряжения (см. 5.4; 6.7.1), пределы допускаемой систематической составляющей относительной погрешности распространяются на оба напряжения.

Примечания 1 Значения, указанные в скобках, — по требованию заказчика. 2 По согласованию между изготовителем и заказчиком в технических условиях могут быть установлены нормальные условия испытаний, отличные от приведенных в таблице.

9.7 Полную мощность, потребляемую цепью напряжения однофазных счетчиков, а также каждой отдельной цепью напряжения трехфазных счетчиков (6.2) следует определять при отсутствии тока в токовой цепи, номинальным напряжении и номинальной частоте методом вольтметра-амперметра.
Падение напряжения следует измерять на соответствующих зажимах счетчика электронным вольтметром.
Класс точности миллиамперметра должен быть 1,0 и более точный, вольтметра — 1,0 и более точный.
Активную мощность (6.2) следует измерять малокосинусным ваттметром.
Класс точности малокосинусного ваттметра должен быть 1,0 и более точный.
9.8 Потребляемую полную мощность в токовых цепях (6.3) следует определять методом вольтметра-амперметра при номинальном токе.
Падение напряжения следует измерять на соответствующих зажимах счетчика электронным милливольтметром.
Класс точности милливольтметра должен быть 1,0 и более точный, амперметра — 1,0 и более точный.
9.9 Определение систематической составляющей относительной погрешности Dс (6.4) при равномерной нагрузке токовых цепей следует проводить одним из методов, указанных в 9.1. Допускается испытывать счетчики на разных нагрузках разными методами, указанными в 9.1, Dс следует определять как среднее арифметическое результатов не менее трех измерений. При проведении приемо-сдаточных испытаний допускается проводить одно измерение.
Систематическую составляющую относительной погрешности Dс счетчиков следует определять при коэффициентах мощности 1,0 и 0,5.
Нагрузки, при которых проводят поверку счетчиков, должны устанавливаться при государственных испытаниях счетчиков и указываться в стандартах и технических условиях на конкретные типы счетчиков.
Счетчики, имеющие стопор обратного хода, при емкостной нагрузке не испытываются.
Систематическую составляющую относительной погрешности Dс, % следует вычислять по формулам
для метода ваттметра и секундомера –

где tн — нормальное время, с, для данного счетчика, т.е. число секунд, за которое диск правильно работающего счетчика должен сделать N оборотов при заданной мощности нагрузки;
t — показание секундомера, с.
Нормальное время, с, следует вычислять по формуле

где P — мощность нагрузки, Вт (вар),
A — передаточное число счетчика, указанное на щитке, обороты диска на 1 кВт·ч (вар·ч);
для метода длительных испытаний (контрольной станции) –

где N- число оборотов диска поверяемого счетчика за время поверки;
N0 — число оборотов диска образцового счетчика за время поверки.
9.10 Определение систематической составляющей относительной погрешности Dс1 (6.5) трехфазных счетчиков при неравномерной нагрузке токовых цепей следует проводить при
а) cosj = 1 и (sinj = 1) и токах 20 и 100% номинального — для счетчиков всех классов точности и максимальном токе — для счетчиков активной энергии класса точности 2,0;
б) cosj = 0,5 инд (sinj = 0,5 инд) и номинальном токе — для счетчиков всех классов точности и 50% номинального — для счетчиков классов точности 0,5 и 1,0.
Напряжение и частота при этом должны быть номинальными.
Приемо-сдаточные испытания счетчиков на соответствие требованиям 6.5 следует проводить для каждой фазы при номинальном напряжении, токе 50% номинального в одной из токовых цепей и отсутствии тока и остальных токовых цепях при cosj = 1 (sinj = 1).
9.11 Определение разности между значениями систематической составляющей относительной погрешности Dсp, определенными при неравномерной нагрузке токовых цепей и при равномерной их нагрузке номинальным током при cosj = 1, при номинальном напряжении (6.6), следует проводить после проведения испытаний на соответствие 6.4 и 6.5 вычислением по формуле
Dcp = Dc1 — Dc
9.12 Если при периодических, типовых или государственных испытаниях счетчика некоторые значения Dc не укладываются в пределы, указанные в таблицах 5 и 6, но есть возможность ввести их в эти пределы путем перемещения оси абсцисс параллельно самой себе на величины, %;

±0,3
для
счетчиков
класса
точности
0,5;

±0,5
»
»
»
»
1,0;

±1,5
»
»
»
»
3,0;

±1,0
»
»
»
»
1,5; 2,0 и 2,5,

то счетчик следует рассматривать как исправный.
После перерегулирования, соответствующего указанному перемещению, такой счетчик должен соответствовать требованиям 6.46.
9.13 При испытаниях счетчиков на соответствие требованиям 6.7 влияющие факторы, кроме поверяемого, должны иметь нормальные значения в соответствии с таблицей 21.
9.14 Коэффициент KU изменения систематической составляющей относительной погрешности при изменении напряжения (6.7.1) следует определять при значениях последнего, равных 90 и 110% номинального.
Измерение следует проводить
а) при cosj = 1 (sinj = 1) и токах 10% номинального и 50% максимального — для счетчиков классов точности 0,5; 1,0; 2,0 и 2,5;
б) при cosj = 0,5 инд (sinj = 0,5 инд) и токе 50% максимального — для счетчиков классов точности 0,5; 1,0 и 2,0;
в) при cosj = 1 (sinj = 1) и токах от номинального до максимального значений тока — для счетчиков классов точности 1,5 и 3,0.
Коэффициент KU, %/1%, следует вычислять по формуле
KU = 0,1 (Dc’ — Dc),
где Dc и Dc’ систематические составляющие относительной погрешности, соответственно, при номинальном и измененном влияющих факторах, %.
Для счетчиков реактивной энергии класса точности 3,0, изготовленных на диапазон напряжений, отношение между наибольшим и наименьшим значениями которых не превышает 1,3, коэффициент KU следует определять при изменении от 90 до 110% значения каждого из экстремальных напряжений и их среднего арифметического.
Для счетчиков реактивной энергии класса точности 3,0, изготовленных на два напряжения, отношение между наибольшим и наименьшим значениями которых превышает 1,3, следует определять при изменении от 90 до 110% значения каждого из этих двух напряжений.
9.15 Коэффициент Kf изменения систематической составляющей относительной погрешности при изменении частоты (6.9.2) следует определять при значениях частоты 95 и 105% номинальной.
Измерение следует проводить
а) при cosj = 1 (sinj = 1) и токах 10% номинального и 50% максимального, при cosj = 0,5 инд (sinj = 0,5 инд) и токе 50% максимального — для счетчиков классов точности 0,5; 1,0; 2,0; 2,5;
б) при cosj = 1 (sinj = 1) и токах 10% номинального и номинальном, при cosj = 0,5 инд (sinj = 0,5 инд) и номинальном токе — для счетчиков классов точности 1,5 и 3,0.
Коэффициент Kf %/1%, следует вычислять по формуле
Kf = 0,2 (Dc’ — Dc),
9.16 Коэффициент Kt изменения систематической составляющей относительной погрешности при изменении температуры окружающего воздуха от среднего значения в пределах рабочих температур (6.7.3) следует определять при cosj = 1 (sinj = 1) и токах 10 и 100% номинального и максимальном; при cosj = 0,5 инд (sinj = 0,5 инд) и токах 20 и 100% номинального и максимальном.
Перед определением Dc и Dc’ счетчики необходимо выдерживать при установившейся температуре в течение 2 ч при массе счетчиков до 2 кг и 3 ч — при массе 2 кг и более при номинальных напряжении, токе, частоте и cosj = 1 (sinj = 1).
Установившаяся температура в термокамeре должна поддерживаться с точностью ±3 °С.
Коэффициент Kt, %/1 °С, следует вычислять по формуле

где tp и tcp соответственно верхнее или нижнее и среднее значения рабочей температуры, °С.
Примечание — Допускается определять температурный коэффициент при изменении температуры на ±10 °С в любом участке рабочего диапазона температур. В этом случае Kt, %/1 °С, следует вычислять по формуле
Kt = 0,1 (Dc’ — Dc)
9.17 Коэффициент Ks изменения систематической составляющей относительной погрешности при отклонении счетчика от вертикали (6.7.4) следует определять при наклонах вперед, назад, влево, вправо на 3 ° при cosj = 1 (sinj = 1) и токах 5% номинального для счетчиков активной энергии класса точности 0,5; 1,0; 2,0; 10% номинального для счетчиков активной энергии класса точности 2,5 и реактивной энергии классов точности 1,5; 2,0; 3,0; 100% номинального для счетчиков активной энергии всех классов точности и реактивной энергии класса точности 2,0; максимальном для счетчиков всех классов точности.
Коэффициент Ks %/1 °, следует вычислять по формуле
Ks = 1/3 (Dc’ — Dc)
9.18 Изменение систематической составляющей относительной погрешности от влияния внешнего магнитного поля Dlm, %, (6.8) следует вычислять по формуле
Dlm = Dc’ — Dc
Испытуемый счетчик следует помещать в центр круглой катушки диаметром 1 м с прямоугольным поперечным сечением и небольшой по сравнению с диаметром радиальной толщиной, м.д.с. которой составляет 400 ампер-витков.
Питание катушки осуществляется через фазорегулятор током одинаковой частоты с напряжением счетчика. Испытания проводят при сдвигах фаз между током катушки и напряжением, подаваемым на счетчик, равных 0 и 60 ° инд.
Испытание трехфазных счетчиков следует производить при питании катушки поочередно от каждой фазы при установке ротора фазорегулятора в положениях j = 0 и j = 60 ° инд.
Положения плоскости катушки по отношению к счетчику должны быть следующие
параллельно плоскости диска;
параллельно плоскости электромагнитов;
перпендикулярно к плоскости диска и плоскости каждого электромагнита.
9.19 Испытания счетчиков на влияние магнитного поля вспомогательных устройств (6.9) проводят при включенном и выключенном вспомогательном устройстве. При этом включение катушки реле должно быть таким, при котором имеет место максимальное изменение систематической составляющей относительной погрешности.
Изменение систематической составляющей относительной погрешности следует вычислять по 9.18.
Примечание — Вспомогательное устройство счетчика питается прерывисто например, электромагнит счетного механизма многотарифного счетчика.
Желательно, чтобы был указан правильный способ подключения вспомогательных цепей.
Если это подключение выполняется с помощью штепсельных разъемов, то должна быть предотвращена возможность изменения присоединения.
Однако при отсутствии таких обозначений или предотвращении возможности изменения подключения изменение систематической составляющей относительной погрешности не должно превышать значений, указанных в 6.9, если счетчик испытывается при самом неблагоприятном включении.
9.20 Испытание влияния порядка чередования фаз (6.10) следует проводить при cosj = 1, номинальном напряжении, номинальной частоте и токах 50 и 100% номинального и максимальном. Изменение порядка чередования фаз производят путем перестановки любых двух фаз в подключении цепей тока и напряжения счетчика.
При обратном порядке фаз и нагрузке только одного из вращающих элементов счетчиков классов точности 0,5; 1,0; 2,0 испытание следует проводить при cosj = 1, токе 50% номинального, номинальных напряжении и частоте.
9.21 При испытании счетчиков на кратковременное воздействие сверхтоком (6.11) испытательная схема должна быть практически безындукционной, а на зажимы цепи напряжения счетчика должно быть подано номинальное напряжение номинальной частоты.
Изменение систематической составляющей относительной погрешности DlI , %, от кратковременного воздействия указанным током определяют при номинальных напряжении, частоте, cosj = 1 (sinj = 1) и токе 100% номинального и вычисляют по формуле
DlI = Dc’ — Dc
При этом Dc определяют до воздействия, Dc’ — после выдержки счетчиков при номинальном напряжении в течение 1 ч после воздействия сверхтока.
9.22 При испытании счетчиков на влияние нагрева (6.12) цепи напряжения счетчиков следует выдерживать под номинальным напряжением в течение времени, указанного в 9.2.
После этого все токовые цепи должны быть нагружены максимальным током.
Систематическую составляющую относительной погрешности следует определять непосредственно после включения токовых цепей и через промежутки времени, достаточно короткие дли снятия кривой изменения погрешности в зависимости от нагрева.
Продолжительность испытания — не менее 1 ч. Испытание можно считать законченным, когда изменение систематической составляющей относительной погрешности в течение 20 мин не превышает 0,2%.
Испытание следует проводить отдельно при cosj = 1 и cosj = 0,5 инд (sinj = 1 и sinj = 0,5 инд).
Изменение систематической составляющей относительной погрешности от нагрева вычисляется как разность между начальным значением погрешности и установившимся в процессе испытания.
9.23 Изменение систематической составляющей относительной погрешности счетчика от влияния механической нагрузки одно- или многотарифным счетным механизмом (6.13) следует определять испытанием счетчиков с введенным и выведенным из зацепления счетным механизмом.
Изменение систематической составляющей относительной погрешности Dln, %, вычисляют по формуле
Dln = Dc’ — Dc
Примечание — Воздействие компенсируется при регулировании счетчика.
9.24 Испытание счетчиков на влияние третьей гармоники в кривой тока (6.14) следует проводить при наиболее неблагоприятном сдвиге фаз третьей гармоники тока по отношению к току основной частоты.
Коэффициент нелинейных искажений в цепи напряжения должен быть менее 1%.
9.25 Отсутствие самохода (6.15) проверяют при вращении только одного барабана счетного механизма барабанного типа.
По требованию заказчика при остановке диска метка на ребре диска должна быть видна в прорези щитка.
Для счетчиков, конструкцией антисамоходного устройства которых обеспечивается положение метки диска в прорези щитка, допускается проверку самохода при приемо-сдаточных испытаниях проводить следующим образом диск следует установить так, чтобы метка диска расположилась в прорези симметрично относительно краев прорези на щитке. Подать на счетчик напряжение, равное 110 и 80% номинального, и убедиться, что в течение 10 мин края метки диска не ушли за края прорези на щитке.
9.26 Проверку порога чувствительности (6.16) следует проводить при номинальном напряжении, cosj = 1 (sinj = 1) и соответствующем токе.
Диск счетчика должен начать вращение и сделать нe менее одного оборота за время, не превышающее T, при этом для счетчика со счетным механизмом барабанного типа допускается вращение не более двух барабанов (переход с показания «9» на «0» только барабана младшего разряда). Погрешность определения мощности не должна превышать ±10%. Время T, мин, следует определять по формуле
,
где nном — скорость вращения диска при номинальной нагрузке, об/мин;
m — порог чувствительности, % номинального тока.
9.27 Превышение температуры Dt обмоток счетчика (6.17) следует определять методом сопротивления и вычислять по формуле

где t0 — начальная температура, °С;
rt — сопротивление обмотки при температуре перегрева;
r0 — сопротивление обмотки при начальной температуре.
Сопротивление обмоток следует измерять на зажимах счетчика мостом класса точности 0,5 и более точным.
Превышение температуры наружной поверхности корпуса следует определять с помощью термопары и милливольтметра. Погрешность измерения температуры и (или) ее превышение не должны превышать 3%.
Все токовые цепи счетчика должны быть нагружены максимальным током, ко всем цепям напряжения и вспомогательным цепям должны быть приложены напряжения, равные 120% номинального, и при cosj = 1 (sinj =1).
Счетчик должен находиться во включенном состоянии не менее 2 ч.
Во время испытаний счетчик не должен подвергаться воздействию воздушных потоков или прямой солнечной радиации.
Температура окружающего воздуха во время испытания не должна превышать 40 °С.
При измерении сопротивления цепи кабель, используемый для питания счетчика, должен иметь длину около 1 м и поперечное сечение, при котором плотность тока менее 4 А/мм2.
Если счетчик имеет шунты, соединенные с их токовыми цепями, превышение температуры должно быть измерено (все цепи счетчика нагружены, как указано выше) непосредственно термопарой.
Требования к превышению температуры относятся только к токовым обмоткам, но не к шунтам.
После испытания счетчик должен быть без видимых повреждений и должен выдерживать испытания напряжением по 6.21 — 6.24.
9.28 Испытание счетчиков на влияние транспортной тряски (6.18) необходимо проводить в течение 2 ч на испытательном стенде, создающем тряску в вертикальном направлении. Ящик с упакованными счетчиками должен быть укреплен на стенде без наружной амортизации в положении, определенном имеющейся на ящике надписью «Верх».
В случае отсутствия испытательного стенда допускается испытания на влияние транспортной тряски проводить транспортированием счетчиков в грузовом автомобиле.
Ящик с упакованными счетчиками должен быть закреплен в кузове автомобиля, движущегося по дорогам с неусовершенствованным покрытием со средней скоростью 40 км/ч на расстояние 200 км.
До и после испытаний счетчики проверяют на соответствие требованиям 6.4 при номинальных токе и напряжении и требованиям 6.15 и 6.16.
9.29 Испытания счетчиков на тепло-, холодо- и влагоустойчивость (5.2); на тепло-, холодо- и влагопрочность в потребительской таре (6.19) следует проводить по ГОСТ 22261.
Время выдержки счетчиков в условиях установившейся температуры при испытаниях должно быть, ч
2-3 — в зависимости от массы счетчика (9.16) при испытаниях на тепло- и холодоустойчивость;
6 — при испытаниях на тепло- и холодопрочность;
48 — при испытаниях на влагоустойчивость и влагопрочность.
В течение испытаний на теплоустойчивость счетчики должны быть подключены на номинальное напряжение.
В процессе испытаний на тепло-, холодо- и влагоустойчивость счетчики следует проверять на соответствие требованиям 6.7.3 при номинальных токе, напряжении и частоте при cosj = 1 (sinj = 1) и cosj = 0,5 инд (sinj = 0,5 инд).
До и после испытаний на тепло-, холодо- и влагоустойчивость, а также на тепло-, холодо- и влагопрочность счетчики следует проверять на соответствие требованиям 6.4; 6.15; 6.16. До и после испытаний на влагоустойчивость счетчики следует проверять также на соответствие требованиям 6.21 — 6.25.
Время выдержки счетчиков в нормальных климатических условиях перед проверкой характеристик после каждого вида испытаний должно быть не менее, ч
2 — при испытаниях на тепло- и холодоустойчивость;
12 — при остальных видах испытаний.
Примечания
1 Испытаниям на влагоустойчивость следует подвергать только счетчики в тропическом исполнении.
2 В процессе испытаний на тепло- и холодоустойчивость допускается определять Kt по 9.16.
9.30 Испытания счетчиков на грибостойкость (6.20) — по ГОСТ 9.048.
9.31 Испытания электрической прочности изоляции счетчика (6.21 — 6.25) следует проводить в нормальных условиях применения
температура окружающей среды от 15 до 25 °С;
относительная влажность воздуха от 45 до 75%;
атмосферное давление от 86 до 106 кПа (от 860 до 1060 мбар).
Во время испытаний изоляция не должна подвергаться воздействию пыли или влажности, не соответствующей нормальным условиям.
Счетчик должен выдерживать испытания импульсным напряжением и напряжением переменного тока, изложенные в 9.32; 9.33, при этом сначала следует проводить испытания импульсным напряжением, а затем испытания напряжением переменного тока.
Этим испытаниям счетчик должен подвергаться только один раз.
При необходимости повторных испытаний следует использовать другие образцы или проводить повторные испытания напряжением, пониженным на 10% на каждое повторное испытание, но не более чем на 20% в целом.
При проведении испытаний результаты испытаний электрической прочности изоляции считаются действительными только для расположения (устройства) зажимов проверенного счетчика. В случае иного расположения (устройства) зажимов все испытания электрической прочности изоляции должны быть проверены снова.
При испытании электрической прочности изоляции термин «земля» имеет следующий смысл
а) если корпус счетчика изготовлен из металла, «землей» является сам корпус, установленный на плоской токопроводящей поверхности;
б) если корпус счетчика или хотя бы часть его изготовлена из изоляционного материала, «Землей» является проводящая пленка из фольги, охватывающая счетчик и присоединенная к плоской токопроводящей поверхности, на которой установлен цоколь счетчика или металлические наружные части корпуса. Проводящая пленка из фольги должна находиться от зажимов и от отверстий для проводов на расстоянии не менее 20 мм.
Во время испытаний импульсным напряжением и напряжением переменного тока цепи, которые не подвергаются испытаниям, присоединяются либо к стойке, либо к «Земле».
Во время испытаний не должны происходить разряд или пробой изоляции.
После этих испытаний по согласованию с заказчиком для счетчиков, разработанных после 01.07.97, изменение систематической составляющей относительной погрешности счетчика, выраженное в процентах, не должно быть более недостоверности (неточности) измерений, указанных в 9.5.
9.32 Испытание электрической прочности изоляции импульсным напряжением (6.21) следует проводить напряжениям, форма кривой которого типа 1,2/50, т.е. такими импульсами, передний фронт которых составляет 1,2 мкс, а спад до половинного значения — 50 мкс.
Испытательное напряжение с пиковым значением 6000 В следует подавать десять раз с интервалом между импульсами 1 мин. Все импульсы должны быть одинаковой полярности.
При десятикратном подключении испытательного напряжения ни один из импульсов не должен привести к образованию дуги. Испытания следует проводить независимо на каждой цепи (или совокупности цепей), которые в условиях эксплуатации изолированы от других цепей счетчика. Зажимы цепей, не подвергаемых испытанию импульсным напряжением, должны быть соединены с «Землей».
Если в условиях эксплуатации цепи напряжения и тока вращающего элемента соединены между собой, испытанию следует подвергать весь узел. В этом случае другой конец каждой цепи напряжения должен быть соединен поочередно с «Землей», а импульсное напряжение следует прикладывать соответственно между каждым свободным концом токовой цепи и «Землей».
Если цепи напряжения счетчика имеют общую точку, она должна быть соединена с «Землей», а импульсное напряжение должно быть приложено соответственно между свободным концом токовой цепи или цепи напряжения и «Землей».
Если в условиях эксплуатации цепи тока и напряжения вращающего элемента изолированы друг от друга и имеют соответствующую изоляцию, испытание следует проводить отдельно на каждой цепи.
При испытании цепи тока зажимы других цепей должны бьггь соединены с «Землей», а импульсное напряжение должно быть приложено между одним из зажимов тока и «Землей».
Во время испытаний цепи напряжения зажимы отдельных цепей и один из зажимов испытуемой цепи напряжения должны быть соединены с «Землей», а импульсное напряжение должно быть приложено между другим зажимом цепи напряжения и «Землей».
Вспомогательные цепи, предназначенные для непосредственного присоединения к сети или к тем же трансформаторам напряжения, что и цепи счетчика, с номинальным напряжением выше 40 В должны быть подвергнуты испытаниям импульсным напряжением по методике испытания цепей напряжения. Другие вспомогательные цепи этому испытанию не подвергают.
При испытании изоляции электрических цепей относительно «Земли» все зажимы электрических цепей счетчика, включая зажимы его вспомогательных цепей с номинальным напряжением выше 40 В, должны быть соединены между собой.
Все вспомогательные цепи с номинальным напряжением, равным 40 В или ниже этого значения, должны быть соединены с «Землей».
Импульсное напряжение должно быть приложено между всеми электрическими цепями и «Землей».
9.33 Испытания электрической прочности изоляции напряжением переменного тока (6.22 — 6.25) следует проводить на установке, позволяющей плавно повышать испытательное напряжение практически синусоидального переменного тока частотой 50 Гц от нуля до заданного значения. Допускается выбирать другую частоту переменного тока в диапазоне частот 45 — 65 Гц. Скорость изменения напряжения должна быть такой, чтобы испытательное напряжение изменялось от нуля до заданного значения за время от 5 до 20 с. Уменьшение испытательного напряжения до нуля должно производиться с такой же скоростью. Значения испытательного напряжения должны соответствовать указанным в 6.22 — 6.25. Испытательное напряжение должно быть приложено в течение 1 мин.
Допускается длительность испытаний 1 с при условии повышения испытательного напряжения на 25%. При этом допускается испытательное напряжение подавать и снимать мгновенно, если оно прикладывается между «Землей» либо стойкой, и последовательно каждой испытуемой цепью счетчика без соединения зажимов испытуемых цепей.
Мощность источника испытательного напряжения должна быть не менее 500 В·А.
9.33.1 При испытании счетчиков на соответствие требованиям 6.22 испытательное напряжение должно быть приложено
у счетчиков с металлическим корпусом между всеми соединенными вместе с зажимами испытуемых цепей и винтом для заземления корпуса;
у счетчиков с корпусом из изоляционного материала между всеми соединенными вместе зажимами испытуемых цепей и стойкой или «Землей» или металлическими наружными частями корпуса;
при проверке электрической прочности изоляции раздельных электрических цепей между всеми соединенными вместе зажимами одной цепи и соединенными вместе зажимами другой цепи.
Появление «короны» и шума, а также дрожание диска при испытании не являются признаками неудовлетворительной изоляции.
Допускается испытание электрической прочности изоляции вновь изготовленных счетчиков и счетчиков, прошедших ремонт, проводить до поверки техническим контролем предприятия-изготовителя. В этом случае повторные испытания электрической прочности изоляции не проводят.
9.33.2 Испытания счетчика на соответствие требованиям 6.23 [перечисления а) — г)] проводят при снятых кожухе и крышке зажимов.
Испытания по перечислениям а) и б) следует проводить на счетчиках, предназначенных для включения через измерительные трансформаторы, а также на некоторых специальных счетчиках с отдельными обмотками тока и напряжения.
Если цепи напряжения многофазного счетчика в условиях эксплуатации имеют общую точку, то она должна быть сохранена во время испытания по перечислению г). В этом случае совокупность всех цепей вращающих элементов подвергают только одному испытанию. Цепи, подвергаемые испытаниям по перечисленным а) и б), не подлежат испытанию по перечислению г).
9.33.3 При испытании счетчика с изолирующим корпусом класса защиты II на соответствие требованиям 6.24 испытательное напряжение 4000 В должно быть приложено между всеми соединенными вместе зажимами испытуемых цепей и «Землей».
9.33.4 Испытание напряжением 40 В счетчика с изолирующим корпусом класса защиты II на соответствие требованиям 6.25 допускается не проводить, если при визуальном контроле достаточность дополнительной изоляции не вызывает сомнений.
9.34 Испытание счетчика на соответствие требованиям 6.27 следует проводить при помощи пружинного ударного устройства по ГОСТ 27570.0.
Счетчик должен находиться в положении, в котором его эксплуатируют. При помощи ударного устройства наносят по одному удару с моментом силы (0,22±0,05) Н·м на каждую поверхность корпуса счетчика, включая и поверхности, имеющие окно, а также крышку зажимов. Удары по стеклу не допускаются.
Испытания считают удовлетворительными, если на корпусе счетчика и на крышке зажимов не обнаружены трещины, поломки и другие дефекты, которые могут оказывать влияние на работу счетчика.
9.35 Измерение сопротивления изоляции (6.34) следует проводить по ГОСТ 22261.
Значения напряжения, при котором измеряют сопротивление изоляции, и времени, по истечении которого проводят отсчет показаний, и также цепи, подлежащие проверке, должны быть установлены в технических условиях на счетчики конкретного типа.
9.36 Емкость учета счетного механизма (6.39) и время изменения показаний счетного механизма на одну единицу младшего разряда (6.40) определяют по формулам
, ,
где tc — емкость учета счетного механизма, ч;
tм — время изменения показаний на единицу младшего ряда (первого барабана справа), мин;
Pmax — мощность при максимальной нагрузке, кВт, квар;
Л — число разрядов (барабанов) слева от запятой;
П — число разрядов (барабанов) справа от запятой.
9.37 Испытание функции переключающего устройства многотарифного счетчика (6.42) должно проводиться при его номинальном напряжении, а также при напряжении, равном 80 и 120% номинального.
9.38 Испытание стопора обратного хода (6.44) следует проводить при максимальном токе и sinj = 1 (cosj = 1), номинальном напряжении и номинальной частоте. Для создания обратного направления вращения диска фазорегулятором создают такой сдвиг, чтобы показания на ваттметрах стали отрицательными, для чего переключатели полярности на ваттметрах следует установить в положение » — «.
Обратное направление вращения диска допускается создавать другими способами, например, изменением направления тока в токовой цепи счетчика.
Счетчик считают выдержавшим испытание, если в этих условиях диск счетчика сделает не более одного полного оборота справа налево.
9.39 Запасы регулировки (6.47) следует определять путем измерения скорости вращения подвижной части счетчика при помощи регулирующих органов в сторону увеличения и уменьшения скорости от фиксированного положения в отрегулированном счетчике.
Запас регулировки Dр, %, вычисляют по формуле
,
где t0 — время, за которое диск совершает N оборотов при заданной мощности нагрузки в отрегулированном счетчике, с;
t — то же, при смещенном в крайние положения регулировочном элементе, с.
Число оборотов N выбирают таким, чтобы при данной нагрузке t0 было не менее 50 с.
Примечание — По требованию заказчика для трехфазных счетчиков проверка пределов регулирования при индуктивной нагрузке должна быть сделана на каждом вращающем элементе, когда по цепи тока каждого элемента течет ток, значение которого составляет половину номинального тока с отставанием на 60 ° от напряжения на зажимах данного элемента, а ко всем цепям напряжения вращающих элементов приложено симметричное междуфазное напряжение, среднеквадратическое значение которого равно номинальному напряжению, в последовательности фаз, указанной на схеме включения.
9.40 Методика испытаний счетчиков на безотказность (6.47.2), контроля среднего срока службы (6.47.3), условия и режимы, при которых проводят испытания, должны быть установлены в технических условиях на счетчики конкретного типа.
Определение межповерочного интервала рекомендуется проводить по методике, установленной в технических условиях на счетчики конкретного типа.
9.41 Значение эквивалентного (по энергии) уровня звука (7.4) следует проверять шумомером с характеристикой типа А в свободном звуковом поле по ГОСТ 12.1.026 при следующих режимах работы счетчика
а) напряжении 110% номинального (режим самохода);
б) номинальном напряжении, максимальном токе и cosj = 1 (sinj = 1).
9.42 Испытание на невоспламеняемость (7.5) — по ГОСТ 27483.
9.42.1 Испытания проводят при нормальных климатических условиях по ГОСТ 20.57.406 в чистом помещении без воздействия дополнительных факторов, искажающих результаты испытания (сквозняков, вибрации, изменения температуры и т.д.).
При испытании отдельные части счетчика должны быть подвергнуты воздействию раскаленной петлей температурой
(960±15) °С — для зажимного блока;
(650±10) °С — для крышки зажимов и корпуса счетчика.
Раскаленная петля должна быть приведена в соприкасание с любым местом на поверхности испытуемых частей. Если зажимная плата является неотъемлемой частью цоколя, то достаточно подвергать испытанию только зажимную плату.
Сила нажатия раскаленной петли на испытуемую часть при смещении раскаленной петли в плоскость соприкасания со счетчиком должна составлять от 0,8 до 1,2 Н. Время выдержки (30±1) с.
9.42.2 Аппаратура, используемая при испытании, и оценка результатов испытаний — по ГОСТ 27483.
Допускается контроль температуры раскаленной петли производить пирометром спектрального отношения.
При этом отдельные части счетчика подвергаются воздействию раскаленной петлей температурой
(960±20) °С — для зажимного блока;
(650±15) °С — для крышки зажимов и корпуса счетчика.
9.42.3 Перед началом испытаний счетчик выдерживают в нормальных климатических условиях испытаний по ГОСТ 20.57.406 в течение 24 ч. Проводят внешний осмотр.
Испытания проводят предпочтительно в помещении с тусклым освещением, чтобы возникающее пламя было четко видно. Счетчик устанавливают в рабочем положении, располагая испытуемую часть вертикально. Наконечником раскаленной петли нажимают на места поверхности наименьшей толщины (при этом толщина их должна быть равной), удаленные от верхнего края счетчика не менее чем на 15 мм с силой, установленной в 9.42.1.
Время воспламенения и окончания горения счетчика или шелковидной бумаги регистрируют секундомером.
Испытаниям на невоспламеняемость подвергают один образец. Если результаты испытаний вызывают сомнение, то испытания следует повторить на двух других образцах.

10. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
10.1 Транспортирование счетчиков должно проводиться только в закрытом транспорте (железнодорожных вагонах, контейнерах, закрытых автомашинах, трюмах судов и т.д.).
При транспортировании самолетом счетчики должны быть размещены в отапливаемых герметизированных отсеках.
Условия транспортирования счетчиков в части воздействия климатических факторов — по группе условий хранения ОЖ4 ГОСТ 15150;
счетчиков, предназначенных для эксплуатации в районах с тропическим климатом, — по группе ОЖ2 ГОСТ 15150.
10.2 Хранение счетчиков следует осуществлять по ГОСТ 22261 и настоящему стандарту.
Счетчики следует хранить в транспортной или потребительской таре.
При хранении в потребительской таре на полках или стеллажах счетчики должны быть уложены не более чем в 10 рядов по высоте с применением прокладочных материалов через 5 рядов и не ближе 0,5 м от отопительной системы.
Хранение счетчиков без потребительской тары допускается только в ремонтных мастерских. При этом счетчики должны быть уложены не более чем в 5 рядов по высоте, с применением прокладочных материалов между рядами.
В качестве прокладки следует применять любой материал достаточной прочности (картон, фанера и т.п.).
10.3 Условия хранения счетчиков, предназначенных для эксплуатации в районах с тропическим климатом, должны соответствовать группе ОЖ2 ГОСТ 15150.
10.4 К транспортированию и хранению счетчиков, предназначенных на экспорт, допускается предъявлять требования, отличные от установленных в настоящем стандарте, в соответствии с условиями договора.

11. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ
11.1 Эксплуатация счетчика должна проводиться в соответствии с эксплуатационной документацией, входящей в комплект документации.

12. ГАРАНТИИ ИЗГОТОВИТЕЛЯ
12.1 Изготовитель гарантирует соответствие счетчиков всем требованиям настоящего стандарта и технических условий на счетчики конкретного типа при соблюдении условий эксплуатации, транспортирования и хранения.
12.2 Гарантийный срок хранения — 6 мес с момента изготовления счетчиков, гарантийный срок эксплуатации — 24 мес со дня ввода счетчиков в эксплуатацию или со дня продажи для счетчиков, реализуемых через розничную торговую сеть.

ПРИЛОЖЕНИЕ А
(справочное)
ПРИМЕРЫ ОБОЗНАЧЕНИЯ СЧЕТЧИКОВ
СО — однофазные непосредственного включения или трансформаторные активной энергии;
СОУ — однофазные трансформаторные со вторичным или смешанным счетным механизмом активной энергии;
САЗ — трехфазные непосредственного включения или трансформаторные трехпроводные активной энергии;
СА4 — то же, четырехпроводные;
СР4 — трехфазные непосредственного включения или трансформаторные трех- и четырехпроводные реактивной энергии;
САЗУ — трехфазные трансформаторные со вторичным или смешанным счетным механизмом трехпроводные активной энергии;
СА4У — то же, четырехпроводные;
СР4У — трехфазные трансформаторные со вторичным или смешанным счетным механизмом трех- и четырехпроводные реактивной энергии.
В обозначениях счетчиков буквы и цифры означают
С — счетчик; О — однофазный; А — активной энергии; Р — реактивной энергии; У — со вторичным или смешанным счетным механизмом (универсальный); 3 или 4 — для трех- или четырехпроводной сети.

ГОСТ 7399-97
Группа Е46
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ПРОВОДА И ШНУРЫ НА НОМИНАЛЬНОЕ НАПРЯЖЕНИЕ ДО 450/750 В
Технические условия
Wires and cords of voltage up to and including 450/750 V.
Specifications
МКС 29.060.0
ОКП 35 5000*
________________
(Измененная редакция, Изм. N 1)
Дата введения 1998-01-01
Предисловие
1 РАЗРАБОТАН Российской Федерацией
ВНЕСЕН Госстандартом России
2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 11-97 от 25 апреля 1997 г.)
За принятие проголосовали

Наименование государства
Наименование национального органа по стандартизации

Азербайджанская Республика
Азгосстандарт

Республика Армения
Армгосстандарт

Республика Белоруссия
Госстандарт Белоруссии

Республика Казахстан
Госстандарт Республики Казахстан

Киргизская Республика
Киргизстандарт

Республика Молдова
Молдовастандарт

Российская Федерация
Госстандарт России

Республика Таджикистан
Таджикгосстандарт

Туркменистан
Главная государственная инспекция Туркменистана

Республика Узбекистан
Узгосстандарт

3 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 11 сентября 1997 г. N 304 межгосударственный стандарт ГОСТ 7399-97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1998 г.
4 Стандарт соответствует международным стандартам МЭК 60227-1-93 с изменениями N 1 (1995) и N 2 (1998), МЭК 60227-2-97, МЭК 60227-5-97 с изменением N 1 (1997), МЭК 60245-1-94 с изменениями N 1 (1997) и N 2 (1997), МЭК 60245-2-94 с изменениями N 1 (1997) и N 2 (1997), МЭК 60245-4-94 с изменением N 1 (1997)
(Измененная редакция, Изм. N 1).
5 ВЗАМЕН ГОСТ 7399-80
ВНЕСЕНО Изменение N 1, принятое Межгосударственным Советом по стандартизации, метрологии и сертификации от 18.10.2000 N 18. Государство-разработчик Россия. Постановлением Госстандарта России от 11.03.2001 N 117-ст Изменение N 1 введено в действие на территории РФ с 01.01.2002 и опубликованное в ИУС N 6, 2001 год
ВНЕСЕНА поправка согласно ИУС 5/2002

1. ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий стандарт распространяется на провода и шнуры с медными жилами с поливинилхлоридной изоляцией и с медными и медными лужеными жилами с резиновой изоляцией, предназначенные для присоединения электрических машин и приборов бытового и аналогичного применения к электрической сети номинальным переменным напряжением до 450/750 В.
Требования по безопасности изложены в 3.2, 4.1.2.1-4.1.3.9, 4.1.4.4, 4.1.4.5, 4.1.5.1, 4.1.5.2.

2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ 20.57.406-81 Комплексная система контроля качества. Изделия электронной техники, квантовой электроники и электротехнические. Методы испытаний
ГОСТ 427-75 Линейки измерительные металлические. Технические условия
ГОСТ 2789-73 Шероховатость поверхности. Параметры и характеристики
ГОСТ 2990-78 Кабели, провода и шкуры. Методы испытания напряжением
ГОСТ 3345-76 Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции
ГОСТ 7229-76 Кабели, провода и шнуры. Метод определения электрического сопротивления токопроводящих жил и проводников
ГОСТ 12176-89 Кабели, провода и шнуры. Методы проверки на нераспространение горения
ГОСТ 12177-79 Кабели, провода и шнуры. Методы проверки конструкции
ГОСТ 12182.1-80 Кабели, провода и шнуры. Методы проверки стойкости к многократному перегибу через систему роликов
ГОСТ 12182.8-80 Кабели, провода и шнуры. Метод проверки стойкости к изгибу
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 16962.1-89 Изделия электротехнические. Методы испытаний на устойчивость к климатическим внешним воздействующим факторам
ГОСТ 17491-80 Кабели, провода и шнуры с резиновой и пластмассовой изоляцией и оболочкой. Методы испытания на холодостойкость
ГОСТ 18690-82 Кабели, провода, шнуры и кабельная арматура. Маркировка, упаковка, транспортирование и хранение
ГОСТ 22220-76 Кабели, провода и шнуры. Методы определения стойкости изоляции и оболочек из поливинилхлоридного пластиката к растрескиванию и деформации при повышенной температуре
ГОСТ 22483-77 Жилы токопроводящие медные и алюминиевые для кабелей, проводов и шнуров. Основные параметры. Технические требования
ГОСТ 25018-81 Кабели, провода и шнуры. Методы определения механических показателей изоляции и оболочки
(Измененная редакция, Изм. N 1).

3 ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
3.1 Марки проводов и шнуров и их наименования должны соответствовать указанным в таблице 1.
Таблица 1

Марка
Наименование

ШОГ
Шнур с параллельными жилами, с поливинилхлоридной изоляцией, особо гибкий, на напряжение до 300 В для систем 300/300 В

ШВП
То же, повышенной гибкости

ШВД
Шнур одножильный, с поливинилхлоридной изоляцией, повышенной гибкости, на напряжение до 300 В для систем 300/300 В

ШВВП
Шнур с параллельными жилами, с поливинилхлоридной изоляцией, с поливинилхлоридной оболочкой, гибкий на напряжение до 380 В для систем 380/380 В

ШВЛ
То же, со скрученными жилами

ПВС
Провод со скрученными жилами с поливинилхлоридной изоляцией, с поливинилхлоридной оболочкой, гибкий, на напряжение до 380 В для систем 380/660 В

ПВСП
То же, с параллельными жилами

ШРО
Шнур со скрученными жилами, с резиновой изоляцией, в оплетке из хлопчатобумажной швейной нитки, синтетической нити или из их комбинации, гибкий, на напряжение до 380 В для систем 380/380 В

ПРС
Провод со скрученными жилами, с резиновой изоляцией, с резиновой оболочкой, гибкий, на напряжение до 380 В для систем 380/660 В

ПРМ
Провод со скрученными жилами, с резиновой изоляцией, с оболочкой из маслостойкой резины, гибкий, на напряжение до 380 В для систем 380/660 В

ПСГ
Провод одножильный или со скрученными жилами, с резиновой изоляцией, с усиленной оболочкой из маслостойкой резины, на напряжение до 450 В для систем 450/750 В

Примечания 1 Шнур марки ШОГ может изготовляться в спиральном исполнении мерными длинами, при этом к марке шнура через дефис добавляют букву С» ШОГ-С. 2 Преимущественные области применения проводов и шнуров указаны в приложении А. 3 (Исключено, Изм. N 1). 4 Провода и шнуры в зависимости от конструкции обеспечивают подключение электроприборов всех классов защиты по элекгробезопасности.

(Измененная редакция, Изм. N 1).
Коды ОКП проводов и шнуров приведены в приложении Б.
Расчетная масса проводов и шнуров приведена в приложении В.
3.2 Число, номинальные сечения, классы жил, номинальные толщины изоляции и оболочки, наружные размеры проводов и шнуров должны соответствовать указанным в таблице 2.
Таблица 2

Марка
Число и номинальное
Класс жилы по ГОСТ
Номинальная толщина, мм
Наружные размеры, мм
Электрическое сопротивление

сечение жил, мм2
22483, не ниже, или конструкция
изоляции
оболочки
минимальный
максимальный
изоляции при 70 °С, МОм на 1 км, не менее

ШОГ

Две жилы из мишурных нитей

0,8

2,2х4,4
3,5х7,0
0,019

2,4х5,0*
3,0х6,0*

2х0,50

2,4х4,9
3,0х5,9
0,016

2,5х5,0*
2,8х5,6*

ШВП
2х0,75
6
0,8

2,6х5,2
3,1х6,3
0,014

2,7х5,4*
3,0х6,0*

1х0,50

2,3
2,7
0,014

ШВД
1х0,75
6
0,7

2,4
2,9
0,012

2х0,50

3,0х4,9
3,4х5,4
0,012

3,0х4,9*
3,7х5,9*

ШВВП
2х0,75

3,2х5,2
3,8х6,3
0,010

5
0,5
0,6
3,2х5,2*
3,6х5,8*

3х0,50

3,0х6,8
3,7х8,2
0,012

3,0х6,8*
3,3х7,4*

3х0,75

3,2х7,2
3,8х8,7
0,010

3,2х7,4*
3,6х8,2*

2х0,50

4,6
5,9
0,012

4,8*
5,4*

2х0,75
5
0,5
0,6
4,9
6,3
0,010

ШВЛ

5,2*
5,8*

3х0,50

4,9
6,3
0,012

5,0*
5,7*

3х0,75

0,5
0,6
5,2
6,7
0,010

5,4*
6,1*

2х0,75

0,6
0,8
5,7
7,2
0,011

6,0*
6,6*

2х1,00

0,6
0,8
5,9
7,5
0,010

6,4*
7,0*

2х1,50

0,7
0,8
6,8
8,6
0,010

7 4*
8,2*

2х2,50

0,8
1,0
8,4
10,6
0,009

3х0,75

0,6
0,8
6,0
7,6

ПВС

5

6,4*
7,0*
0,011

3х1,00

0,6
0,8
6,3
8,0
0,010

6,8*
7,6*

3х1,50

0,7
0,9
7,4
9,4
0,010

8,0*
8,8*

3х2,50

0,8
1,1
9,2
11,4
0,009

4х0,75

0,6
0,8
6,6
8,3
0,011

4х1,00

0,6
0,9
7,1
9,0
0,010

4х1,50

0,7
1,0
8,4
10,5
0,010

4х2,50

0,8
1,1
10,1
12,5
0,009

5х0,75

0,6
0,9
7,4
9,3
0,011

5х1,00

0,6
0,9
7,8
9,8
0,010

5х1,50

0,7
1,1
9,3
11,6
0,010

5х2,50

0,8
1,2
11,2
13,9
0,009

ПВСП
2х0,75
5
0,6
0,8
3,7х6,0
4,5х7,2
0,011

3,8х6,0*
4,3х6,8*

2х0,75

5,5
7,2

5,8*
7,2*

2х1,00

5,7
7,6

6,2*
7,5*

ШРО
2х1,50
5
0,8

6,2
8,2

6,8*
8,1*

3х0,75

5,9
7,7

6,2*
7,5*

3х1,00

6,2
8,1

6,6*
7,9*

3х1,50

6,7
8,8

7,2*
8,6*

2х0,75

0,6
0,8
5,7
7,4

6,0*
7,0*

2х1,00
5
0,6
0,9
6,1
8,0

6,6*
7,6*

2х1,50

0,8
1,0
7,6
9,8

8,0*
9,3*

2х2,50

0,9
1,1
9,0
11,6

2х4,00

1,0
1,2
10,5
13,7

3х0,75

0,6
0,9
6,2
8,1

6,5*
7,5*

ПРС
3х1,00

0,6
0,9
6,5
8,5

7,0*
8,1*

3х1,50

0,8
1,0
8,0
10,4

8,6*
10,0*

3х2,50

0,9
1,1
9,6
12,4

3х4,00

1,0
1 2
11,3
14,5

4х0,75

0,6
0,9
6,8
8,8

4х1,00

0,6
0,9
7,1
9,3

4х1,50

0,8
1,1
9,0
11,6

4х2,50
5
0,9
1,2
10,7
13,8

4х4,00

1,0
1,3
12,5
15,9

5х0,75

0,6
1,0
7,6
9,9

5х1,00

0,6
1,0
8,0
10,3

5х1,50

0,8
1,1
9,8
12,7

5х2,50

0,9
1,3
11,9
15,3

2х0,75

0,6
0,8
5,7
7,4

6,0*
7,0*

2х1,00

0,6
0,9
6,1
8,0

6,6*
7,6*

2х1,50

0,8
1,0
7,6
9,8

8,0*
9,3*

ПРМ
2х2,50
5
0,9
1,1
9,0
11,6

3х0,75

0,6
0,9
6,2
8,1

6,5*
7,5*

3х1,0

0,6
0,9
6,5
8,5

7,0*
8,1*

3х1,50

0,8
1,0
8,0
10,4

8,6*
10,0*

3х2,50

0,9
1,1
9,6
12,4

4х0,75

0,6
0,9
6,8
8,8

4х1,00

0,6
0,9
7,1
9,3

4х1,50

0,8
1,1
9,0
11,6

4х2,50

0,9
1,2
10,7
13,8

5х0,75

0,6
1,0
7,6
9,9

5х1,00

0,6
1,0
8,0
10,3

5х1,50

0,8
1,1
9,8
12,7

5х2,50

0,9
1,3
11,9
15,3

1х1,50

0,8
1,4
5,7
7,1

1х2,50

0,9
1,4
6,3
7,9

1х4,00

1,0
1,5
7,2
9,0

1х6,00

1,0
1,6
7,9
9,8

1х10,0

1,2
1,8
9,5
11,9

1х16,0

1,2
1,9
10,8
13,4

1х25,0

1,4
2,0
12,7
15,8

1х35,0

1,4
2,2
14,3
17,9

1х50,0

1,6
2,4
16,5
20,6

1х70,0

1,6
2,6
18,6
23,3

1х95,0

1,8
2,8
20,8
26,0

ПСГ
1х120
5
1,8
3,0
22,8
28,6

1х150

2,0
3,2
25,2
31,4

1х185

2,2
3,4
27,6
34,4

1х240

2,4
3,5
30,6
38,3

1х300

2,6
3,6
33,5
41,9

1х400

2,8
3,8
37,4
46,8

2х1,00

0,8
1,3
7,7
10,0

2х1,50

0,8
1,5
8,5
11,0

2х2,50

0,9
1,7
10,2
13,1

2х4,00

1,0
1,8
11,8
15,1

2х6,00

1,0
2,0
13,1
16,8

2х10,0

1,2
3,1
17,7
22,6

2х16,0

1,2
3,3
20,2
25,7

2х25,0

1,4
3,6
24,3
30,7

3х1,00

0,8
1,4
8,3
10,7

3х1,50

0,8
1,6
9,2
11,9

3х2,50

0,9
1,8
10,9
14,0

3х4,00

1,0
1,9
12,7
16,2

3х6,00

1,0
2,1
14,1
18,0

3х10,0

1,2
3,3
19,1
24,2

3х16,0

1,2
3,5
21,8
27,6

3х25,0

1,4
3,8
26,1
33,0

3х35,0

1,4
4,1
29,3
37,1

3х50,0

1,6
4,5
34,1
42,9

3х70,0

1,6
4,8
38,4
48,3

3х95,0

1,8
5,3
43,3
54,0

4х1,00

0,8
1,5
9,2
11,9

4х1,50

0,8
1,7
10,2
13,1

4х2,50

0,9
1,9
12,1
15,5

4х4,00

1,0
2,0
14,0
17,9

ПСГ
4х6,00
5
1,0
2,3
15,7
20,0

4х10,0

1,2
3,4
20,9
26,5

4х16,0

1,2
3,6
23,8
30,1

4х25,0

1,4
4,1
28,9
36,6

4х35,0

1,4
4,4
32,5
41,1

4х50,0

1,6
4,8
37,7
47,5

4х70,0

1,6
5,2
42,7
54,0

4х95,0

1,8
5,9
48,4
61,0

4х120

1,8
6,0
53,0
66,0

4х150

2,0
6,5
58,0
73,0

5х1,00

0,8
1,6
10,2
13,1

5х1,50

0,8
1,8
11,2
14 4

5х2,50

0,9
2,0
13,3
17,0

5х4,00

1,0
2,2
15,6
19,9

5х6,00

1,0
2,5
17,5
22,2

5х10,0

1,2
3,6
22,9
29,1

5х16,0

1,2
3,9
26,4
33,3

5х25,0

1,4
4,4
32,0
40,4

* Для проводов и шнуров, предназначенных для армирования неразборной арматурой. Второе значение наружных размеров (без знака *) — для проводов и шнуров, не предназначенных для армирования неразборной арматурой, при заказе к маркам этих проводов и шнуров добавляют букву «н».

Примечание — В проводах и шнурах с резиновой (кроме проводов и шнуров с наружными размерами со знаком*) и поливинилхлоридной изоляцией по требованию потребителя токопроводящие жилы должны быть изготовлены из медных луженых проволок. При заказе к марке провода или шнура добавляют букву «л».

(Измененная редакция, Изм. N 1).
Нижнее предельное отклонение толщины изоляции и оболочки в любом сечении не должно быть более 0,1 мм плюс 10% для изоляции и 0,1 мм плюс 15% для оболочки от значений, указанных в таблице 2.
Изоляция шнура марки ШВД должна состоять из двух слоев минимальная толщина каждого слоя изоляции в любом сечении должна быть не менее 0,2 мм, минимальная общая толщина изоляции двух слоев — не менее 0,6 мм.
Оболочка провода марки ПСГ (кроме одножильного) с жилами сечением от 16 до 150 мм2 может состоять из двух слоев. Номинальная толщина каждого слоя в любом сечении провода должна соответствовать указанной в таблице 5.
Таблица 5*

Число и номинальное сечение жил, мм2
Номинальная толщина оболочки, мм

внутреннего слоя
наружного слоя

2х16,0
1,3
2,0

2х25,0
1,4
2,2

3х16,0
1,4
2,1

3х25,0
1,5
2,3

3х35,0
1,6
2,5

3х50,0
1,8
2,7

3х70,0
1,9
2,9

3х95,0
2,1
3,2

4х16,0
1,4
2,2

4х25,0
1,6
2,5

4х35,0
1,7
2,7

4х50,0
1,9
2,9

4х70,0
2,0
3,2

4х95,0
2,3
3,6

4х120
2,4
3,6

4х150
2,6
3,9

5х16,0
1,5
2,4

5х25,0
1,7
2,7

Нижнее предельное отклонение толщины внутреннего и наружного слоев оболочки в любом месте не должно быть более 0,1 мм + 15% значений, указанных в таблице 5.
Наружный слой оболочки провода марки ПСГ должен иметь адгезию к внутреннему слою.
Разность между любыми двумя значениями наружного диаметра проводов и шнуров марок ШВЛ, ПРС и ПВС, не предназначенных для армирования неразборной арматурой, на одном и том же сечении (овальность) не должна превышать 15% максимального наружного размера, а овальность проводов и шнуров марок ШРО, ШВЛ, ПВС, ПРС, ПРМ, предназначенных для армирования неразборной арматурой, не должна превышать 5% максимального наружного размера, указанного в таблице 2.
Наружный диаметр спирали шнура марки ШОГ-С должен быть от 12 до 18 мм; по обе стороны спирали должны быть линейные концы длиной от 0,06 до 0,07 м.
Мерная длина шнура марки ШОГ-С должна быть (1,2±0,03), (1,7±0,06) или (2,2±0,06) м.
Мерной длиной спирального шнура марки ШОГ-С считают соответствующую линейную мерную длину заготовки из шнура марки ШОГ.
(Измененная редакция, Изм. N 1).
3.3 Строительная длина проводов и шнуров должна быть не менее 50 м. Допускается в партии не более 10% отрезков длиной не менее 5 м.
Допускается поставка проводов и шнуров любыми длинами, согласованными с потребителем.
По согласованию с потребителем шнур марки ШОГ может поставляться мерными длинами. Мерная длина шнура должна быть (1,2±0,03), (1,7±0,06) или (2,2±0,06) м.
(Измененная редакция, Изм. N 1).
3.4 Примеры условных обозначений
Провода марки ПВС с двумя жилами сечением 0,75 мм2, предназначенного для армирования неразборной арматурой, исполнения У
ПВС-У 2х0,75 ГОСТ 7399-97
То же, исполнения Т
ПВС-Т 2х0,75 ГОСТ 7399-97
Провода марки ПВС с тремя основными жилами сечением 0,75 мм2, предназначенного для армирования неразборной арматурой
ПВС 3х0,75 ГОСТ 7399-97
Провода марки ПВС с двумя основными и заземляющей жилами сечением 0,75 мм2, предназначенного для армирования неразборной арматурой
ПВС 2х0,75+1х0,75 ГОСТ 7399-97
Провода марки ПРС с двумя жилами сечением 0,75 мм2, не предназначенного для армирования неразборной арматурой, с лужеными жилами, в оболочке зеленого цвета
ПРС нлц 2х0,75 ГОСТ 7399-97
Шнура марки ШОГ, предназначенного для армирования неразборной арматурой
ШОГ ГОСТ 7399-97
То же, мерной длиной 1,7 м
ШОГ-1,7 ГОСТ 7399-97;
То же, спирального
ШОГ-С-1,7 ГОСТ 7399-97
(Измененная редакция, Изм. N 1).

4 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
Провода и шнуры должны соответствовать требованиям настоящего стандарта и изготовляться в климатических исполнениях по ГОСТ 15150
У — категорий размещения 1, 2 или 3 (за исключением шнуров марок ШОГ, ШВД), или
Т — категории размещения 4, или
УХЛ — категории размещения 4 по технологической документации, утвержденной в установленном порядке.
(Измененная редакция, Изм. N 1).
4.1 Характеристики
4.1.1 Требования к конструкции
4.1.1.1 Токопроводящие жилы проводов и шнуров, кроме шнура марки ШОГ, должны быть изготовлены из медной или медной луженой проволоки в соответствии с таблицей 2 и соответствовать требованиям ГОСТ 22483 и ТУ 16-505.850 [1].
Направление скрутки проволок в жилу — левое.
Мишурные токопроводяшие жилы шнура марки ШОГ должны соответствовать требованиям ТУ 16-705.129 [2].
Токопроводящие жилы проводов и шнуров с поливинилхлоридной и резиновой изоляцией по требованию потребителя, проводов и шнуров с резиновой изоляцией, предназначенных для армирования неразборной арматурой, и с резиновой изоляцией исполнения Т должны быть изготовлены из медных луженых проволок.
(Измененная редакция, Изм. N 1).
4.1.1.2 Токопроводящие жилы проводов и шнуров должны быть изолированы поливинилхлоридным пластикатом или резиной в соответствии с таблицами 1 и 2.
Коэффициент эксцентриситета поливинилхлоридной изоляции — не более 10%, резиновой — не более 15%.
(Измененная редакция, Изм. N 1).
4.1.1.3 Параллельно уложенные жилы шнуров марок ШВП, ШОГ должны иметь разделение между жилами. Толщина изоляции между жилами должна быть не менее 1,6 мм.
Высота разделительного участка шнура марки ШОГ должна быть не более 0,9 мм. Изоляция между жилами, кроме шнура марки ШОГ, должна разделяться при усилии от 3 до 30 Н.
(Измененная редакция, Изм. N 1).
4.1.1.4 Изоляция, кроме шнура марки ШОГ, должна плотно прилегать к токопроводящей жиле, но легко отделяться.
4.1.1.5 Изолированные жилы проводов и шнуров марок ПВС, ПРС, ПРМ, ПСГ, ШВЛ должны быть скручены без заполнителя. Изолированные жилы пятижильных проводов допускается скручивать вокруг сердечника.
Изолированные жилы шнура марки ШРО должны быть скручены с заполнителем из пряжи.
Допускается скрутка двух изолированных жил шнура марки ШРО без заполнителя (при условии, что две скрученные изолированные жилы в сечении будут иметь круглую форму) для реализации на внутреннем рынке, при этом поверх скрученных жил может быть наложен сепаратор в виде пленки или ленты.
(Измененная редакция, Изм. N 1).
4.1.1.6 На изолированные жилы проводов и шнуров марок ШВВП, ШВЛ, ПВС, ПВСП, ПРС, ПРМ и ПСГ должна быть наложена оболочка из поливинилхлоридного пластиката или резины в соответствии с таблицами 1 и 2.
Оболочка на шнуры марок ШВЛ, ПВС, ПРС, ПРМ и ПСГ должна быть наложена так, чтобы она заполняла промежутки между жилами, придавая проводу или шнуру круглую форму.
Допускается наложение оболочки и заполнение промежутков между жилами совмещенным экструдированием. Заполнение может быть из поливинилхлоридного пластиката, вспененного или наполненного поливинилхлоридного пластиката, невулканизованной резины. При этом между материалом заполнения, изоляции и оболочки не должно быть вредного взаимодействия.
Оболочка (оболочка и заполнение) должны легко отделяться от изоляции жил и изолированного грузонесущего элемента без повреждения изоляции.
Допускается под оболочку по скрученным жилам наложение синтетической пленки. Допускается разрушение пленки после наложения оболочки.
(Измененная редакция, Изм. N 1).
4.1.1.7 На поверхности оболочки (изоляции шнуров без оболочки) не должно быть проминов, вмятин, утолщений, наплывов и ребристости, выводящих размеры проводов, шнуров за пределы допустимых отклонений, а также пузырей, трещин, видимых без применения увеличительных приборов.
Для шнура марки ШОГ-С допускается на ненавитых линейных концах на длине не более 10 мм от концов шнуров наличие вмятин от зажимов толщина изоляции в месте вмятин не должна быть менее 0,3 мм.
Изолированные жилы проводов и шнуров в оболочке и шнура марки ШРО должны легко отделяться друг от друга без повреждения изоляции.
Качество поверхности оплетки шнура марки ШРО должно соответствовать РД 16.171 [3].
(Измененная редакция, Изм. N 1).
4.1.1.8 Цвет оболочки (изоляции шнуров без оболочки), оплетки проводов и шнуров должен соответствовать указанному в таблице 6.
4.1.1.9 Цвет изоляции основных жил и расцветка изоляции жилы заземления проводов и шнуров должны соответствовать указанным в таблице 7.
Изоляция жил заземления должна быть зелено-желтой расцветки.
На любом участке жилы заземления длиной 15 мм один из цветов должен покрывать не менее 30 и не более 70% поверхности изоляции, а другой — остальную часть.
Цвет изоляции одножильных проводов марки ПСГ может быть любым.
Таблица 6

Марка
Цвет оболочки (изоляции), оплетки

ШВП, ШВД*
Белый, голубой, желтый, зеленый, коричневый, красный, под слоновую кость, серый, синий, черный

ШВЛ, ПВС, ШВВП, ПВСП
Белый, голубой, желтый, зеленый, коричневый, серый, красный, синий, черный, оранжевый

ШРО
Черный, синий, красный, белый, коричневый и их сочетания

ПРС**
Красный, серый, черный, коричневый, желтый, оранжевый, зеленый, синий, голубой, фиолетовый

ШОГ
Белый, черный

ПРМ, ПСГ
Черный

____________ * Предпочтительный цвет внешнего слоя изоляции шнура марки ШВД — зеленый. Цвет внутреннего слоя должен быть контрастным по отношению к внешнему слою. ** При заказе провода марки ПРС с оболочкой любого цвета, кроме черного и серого, к марке провода прибавляют букву «ц» ПРСц.

(Измененная редакция, Изм. N 1).
Таблица 7

Число
Цвет (расцветка) жил

жил
шнура или провода с заземляющей жилой
шнура или провода без заземляющей жилы

2

Голубой, коричневый

3
Зелено-желтый, голубой, коричневый
Голубой, черный, коричневый

4
Зелено-желтый, голубой, черный, коричневый
Голубой, черный, коричневый, черный или коричневый

5
Зелено-желтый, голубой, черный, коричневый, черный или коричневый
Голубой, черный, коричневый, черный или коричневый, черный или коричневый

Примечание — Для маркировки нулевой жилы применяют только голубой цвет. Если нет нулевой жилы, голубой цвет используют для других жил, кроме заземляющей.

(Измененная редакция, Изм. N 1).
4.1.1.10 Цвета проводов и шнуров должны быть согласованы между потребителем и изготовителем. При отсутствии указания об определенных цветах оболочки (изоляции шнуров без оболочки) изготовитель выполняет провода и шнуры по своему усмотрению в соответствии с таблицей 6. В двухжильных проводах и шнурах допускаются изолированные жилы одного цвета по согласованию с потребителем.
Цвет оболочки (изоляции шнуров без оболочки) проводов и шнуров из поливинилхлоридного пластиката исполнения Т не должен быть белым и/или натуральным.
4.1.2 Требования к электрическим параметрам
4.1.2.1 Провод марки ПСГ должен выдержать испытание переменным напряжением 2500 В, провода и шнуры остальных марок, за исключением шнура марки ШОГ-С, — 2000 В номинальной частотой 50 Гц в течение 5 мин без погружения в воду.
Шнур марки ШОГ-С должен выдержать в воде испытание переменным напряжением 2000 В номинальной частотой 50 Гц в течение 5 мин.
4.1.2.2 Провода и шнуры после выдержки в воде при температуре (20±5) °С в течение 1 ч должны выдержать испытание переменным напряжением частотой 50 Гц в течение 15 мин
2500 В — провод марки ПСГ;
2000 В — провода и шнуры остальных марок.
(Измененная редакция, Изм. N 1).
4.1.2.3 Изолированные жилы проводов и шнуров, за исключением марок ШОГ и ШВД, после выдержки в воде в течение 1 ч при температуре (20±5) °С должны выдержать в течение 5 мин испытание переменным напряжением 1500 В при толщине изоляции до 0,6 мм включительно, 2000 В — при толщине изоляции свыше 0,6 мм и 2500 В — провода марки ПСГ частотой 50 Гц.
4.1.2.4 Электрическое сопротивление изоляции проводов и шнуров с изоляцией и в оболочке из поливинилхлоридного пластиката после пребывания в воде в течение 2 ч при температуре (70±2) °С должно соответствовать указанному в таблице 2.
4.1.2.5 Электрическое сопротивление постоянному току 1 км жилы при 20 °С должно соответствовать ГОСТ 22483.
Максимальное электрическое сопротивление постоянному току жилы шнура марки ШРО может быть увеличено на 3% от значений, соответствующих классу жил, предусмотренному в ГОСТ 22483.
Электрическое сопротивление постоянному току 1 км жилы при 20 °С шнура марки ШОГ должно быть не более 270 Ом.
4.1.3 Требования к механическим параметрам
4.1.3.1 Среднее значение прочности при растяжении изоляции и оболочки проводов и шнуров из поливинилхлоридного пластиката в исходном состоянии должно быть не менее 10 Н/мм2 (10 МПа), относительного удлинения при разрыве — не менее 150%.
Снижение среднего значения прочности при растяжении и относительного удлинения при разрыве после теплового старения не должно быть более 20% исходных средних значений.
4.1.3.2 Поливинилхлоридная изоляция и оболочка проводов и шнуров должны быть
а) стойкими к деформации при температуре (70±2) °С;
б) стойкими к растрескиванию.
4.1.3.3 Средние значения физико-механических характеристик изоляции из резины должны соответствовать указанным в таблице 8.
Таблица 8

Наименование показателя
Значение для проводов и шнуров марок

ШРО, ПРС, ПРМ, ПСГ

В состоянии поставки

— прочность при растяжении, Н/мм2, не менее
5,0

— относительное удлинение при разрыве, %, не менее
250

После теплового старения

— прочность при растяжении, Н/мм2, не менее
4,2

— изменение прочности при растяжении, %, не более
±25

— относительное удлинение при разрыве, %, не менее
250

— изменение относительного удлинения при разрыве, %, не более
±25

(Измененная редакция, Изм. N 1).
4.1.3.4 Средние значения физико-механических характеристик оболочки из резины должны соответствовать указанным в таблице 9.
Таблица 9

Наименование показателя
Значение для провода марки

ПРС
ПРМ, ПСГ

В состоянии поставки

— прочность при растяжении, Н/мм2, не менее
7,0
10,0

— относительное удлинение при разрыве, %, не менее
300
300

После теплового старения

— изменение прочности при растяжении, %, не более
±20
-15

— относительное удлинение при разрыве, %, не менее
250
250

— изменение относительного удлинения при разрыве, %, не более
±20
-25

4.1.3.5 (Исключен, Изм. N 1).
4.1.3.6 Шнур марки ШОГ должен выдержать силу растяжения при пяти падениях груза массой (0,50±0,01) кг при токовой нагрузке от 0,10 до 0,13 А.
4.1.3.7 Спиральные шнуры должны выдержать не менее 45000 циклов вращательного движения по окружности при испытании на износоустойчивость спирали.
4.1.3.8 Спиральные шнуры должны быть эластичными. Длина спиральной части шнуров не должна увеличиваться более чем в три раза под действием собственной массы и должна увеличиваться не менее чем в четыре раза под действием груза массой (0,15±0,01) кг.
После снятия груза длина спиральной части шнуров не должна быть увеличена более чем в 3,5 раза от своей первоначальной длины.
4.1.3.9 Оплетка шнура марки ШРО должна быть износоустойчивой при истирании.
4.1.4 Требования к внешним воздействующим факторам
4.1.4.1 Резиновая изоляция и оболочка проводов и шнуров должны выдерживать испытание на тепловую деформацию в течение 15 мин при температуре (200±3) °С и механическом напряжении 0,20 Н/мм2 (0,20 МПа). При этом относительное удлинение под нагрузкой не должно превышать 175%, после снятия нагрузки и охлаждения образцов — 25% значений, полученных до помещения образцов в термостат.
4.1.4.2 Максимальная температура токопроводящей жилы при эксплуатации должна быть, °С, не более
65 — для проводов и шнуров с резиновой изоляцией;
70 — для проводов и шнуров с поливинилхлоридной изоляцией.
4.1.4.3 Провода и шнуры исполнения У, за исключением шнура марки ШРО и провода марки ПСГ с токопроводящими жилами сечением более 16 мм2, должны быть холодостойкими при температуре минус 40 °С и минус 25 °С до старения и после старения соответственно; провода и шнуры исполнения УХЛ, за исключением провода марки ПСГ с токопроводящими жилами сечением более 16 мм2, минус 25 °С и минус 15 °С до старения и после старения соответственно.
(Измененная редакция, Изм. N 1).
4.1.4.4 Оболочка проводов марок ПРМ и ПСГ должна быть устойчива к воздействию масла.
Значения прочности оболочки при растяжении и относительного удлинения при разрыве после 24 ч пребывания в масле при температуре (100±2) °С могут отличаться на ±40% от исходных значений.
4.1.4.5 Провода и шнуры с изоляцией из поливинилхлоридного пластиката не должны распространять горение.
4.1.4.6 Провода и шнуры исполнения Т должны быть стойкими к поражению плесневыми грибами.
4.1.4.7 Поливинилхлоридная изоляция и оболочка проводов и шнуров должны выдерживать испытание на потерю массы при температуре (80±2) °С в течение 7 сут. Значение потери массы не должно превышать 2,0 мг/см2.
4.1.4.8 Оплетка шнура марки ШРО должна быть теплостойкой.
(Введен дополнительно, Изм. N 1).
4.1.5 Требования по надежности
4.1.5.1 Ресурс проводов и шнуров, выраженный в стойкости к знакопеременным деформациям изгиба при номинальном напряжении, должен быть, циклов (движений), не менее
15000 (30000) — для шнура марки ШВД;
60000 (120000) — для шнура марки ШОГ;
30000 (60000) — для проводов и шнуров остальных марок с жилами сечением до 4,0 мм2 включительно.
Токовая нагрузка на жилах при испытании шнура марки ШОГ должна быть (0,1±0,01) А, шнуров с поливинилхлоридной изоляцией — (1,0±0,1) А. Значения токовых нагрузок на жилах шнуров с резиновой изоляцией приведены в таблице 9а. В двух- и трехжильных проводах и шнурах все жилы должны иметь полную токовую нагрузку по таблице 9а. В четырех- и пятижильных проводах и шнурах полную токовую нагрузку прикладывают к трем жилам или все жилы должны иметь нагрузку In, А, рассчитанную по формуле
, (1)
где n — число изолированных жил;
I3 — полная токовая нагрузка по таблице 9а, А.
По изолированным жилам, не несущим токовой нагрузки, пропускают сигнальный ток.
Таблица 9а

Номинальное сечение токопроводящих жил, мм2
Токовая нагрузка, А

0,75
6

1,00
10

1,50
14

2,50
20

4,00
25

Номинальное растягивающее усилие и диаметр роликов должны соответствовать указанным в таблице 10.
Таблица 10

арка
Число изолированных жил
Номинальное сечение жил, мм2
Номинальное растягивающее усилие, Н (кгс)
Номинальный диаметр роликов, мм

ШВП, ШВД
1 или 2
Для всех сечений
9,8 (1,0)
60

ШВВП, ШВЛ, ШРО
2 или 3
Для всех сечений
9,8 (1,0)
80

ПВС, ПВСП
От 2 до 5
0,75; 1,0
9,8 (1,0)
80

1,5; 2,5
14,7 (1,5)
120

От 2 до 5
0,75
9,8 (1,0)
80

1,0; 1,5
9,8 (1,0)

2
2,5
14,7 (1,5)
120

4,0
24,5 (2,5)
160

1,0
9,8 (1,0)
120

ПРС, ПСГ, ПРМ
3
1,5
14,7 (1,5)

2,5
19,6 (2,0)
160

4,0
29,4 (3,0)

1,0; 1,5
14,7 (1,5)
120

4
2,5
24,5 (2,5)
160

4,0
34,3 (3,5)
200

1,0
14,7 (1,5)
120

5
1,5
24,5 (2,5)
160

2,5
29,4 (3,0)

4,0
39,2 (4,0)
200

ШОГ


4,9 (0,5)
5

(Измененная редакция, Изм. N 1).
4.1.5.2 Установленная безотказная наработка должна быть, ч, не менее
3000 — для шнуров марок ШВП, ШРО и ШВД;
5000 — для проводов и шнуров марок ШВВП, ШВЛ, ПВС, ПВСП и ПРС;
12000 — для проводов и шнуров марок ШВВП, ШВЛ, ПВС, ПВСП, применяемых в стационарных электроприборах.
(Измененная редакция, Изм. N 1).
4.1.5.3 Срок службы проводов и шнуров при ресурсе по 4.1.5.1, при установленной безотказной наработке по 4.1.5.2 и соблюдении условий эксплуатации, хранения и транспортирования, установленных настоящим стандартом, должен быть, лет, не менее
4 — для шнуров марок ШРО;
10 — для шнуров марок ШОГ, ШОГ-С;
6 — для проводов и шнуров остальных марок;
10 — для проводов и шнуров марок ШВВП, ШВЛ, ПВС, ПВСП, применяемых в стационарных электроприборах.
(Измененная редакция, Изм. N 1).
4.2 Требования к маркировке
4.2.1 Маркировка проводов и шнуров должна соответствовать требованиям ГОСТ 18690 с дополнениями, изложенными в 4.2.2-4.2.4.
4.2.2 На поверхности оболочки или изоляции проводов и шнуров без оболочки, кроме шнура марки ШРО, должна быть нанесена непрерывная маркировка, содержащая
— маркоразмер провода (шнура);
— год выпуска;
— кодовое обозначение или товарный знак предприятия-изготовителя.
(Измененная редакция, Попр. 2002)
Маркировка считается непрерывной, если расстояние между концом одной маркировки и началом следующей не превышает
500 и 550 мм — для проводов и шнуров с поливинилхлоридной и резиновой изоляцией соответственно, если маркировка наносится на оболочку;
200 и 275 мм — для проводов и шнуров с поливинилхлоридной и резиновой изоляцией соответственно, если маркировка наносится на изоляцию проводов и шнуров без оболочки.
Маркировка наносится краской или тиснением, или лазерным способом.
Маркировка должна быть четкой и легко читаемой.
По согласованию с потребителем провода и шнуры, предназначенные для армирования, могут изготовляться без маркировки.
Маркировка шнура марки ШРО должна осуществляться опознавательной нитью, присвоенной предприятию-изготовителю.
По согласованию с потребителем допускается применять опознавательную нить в проводах и шнурах, не предназначенных для армирования неразборной арматурой.
(Измененная редакция, Изм. N 1).
4.2.3 На ярлыке, прикрепленном к бухте, барабану, ящику, коробке, а также на индивидуальном пакете или этикетке, вложенной в пакет, должны быть указаны
— наименование предприятия-изготовителя или его товарный знак;
— условное обозначение провода или шнура;
— обозначение настоящего стандарта;
— длина провода или шнура в метрах или число мерных отрезков;
— масса брутто в килограммах (для барабанов, ящиков или коробок);
— дата изготовления (год, месяц);
— знак соответствия при наличии сертификата.
На ярлыке должен быть проставлен штамп технического контроля.
(Измененная редакция, Изм. N 1).
4.2.4 Маркирование проводов и шнуров в бухтах, предназначенных для розничной торговой сети, должно производиться на этикетке, прикрепленной к бухте.
4.3 Требования к упаковке
4.3.1 Упаковка проводов и шнуров должна соответствовать требованиям ГОСТ 18690 с дополнениями, изложенными в 4.3.2.
4.3.2 Провода и шнуры, кроме шнура марки ШОГ-С, должны быть намотаны в бухты или на барабаны. Бухты должны иметь плотную намотку без смещения и перехлестывания витков и упакованы в термоусаживаемую пленку.
Допускается упаковка бухт в полиэтиленовую или поливинилхлоридную пленку, или индивидуальные пакеты, а также другие виды упаковки, обеспечивающие сохранность проводов и шнуров при хранении и транспортировании.
Шнуры марок ШОГ и ШОГ-С, поставляемые мерными длинами, должны быть упакованы в коробки или деревянные ящики, выложенные внутри упаковочной бумагой.
Масса грузового места, предназначенного для розничной торговли, не должна превышать 15 кг.
(Измененная редакция, Изм. N 1).

5 ПРАВИЛА ПРИЕМКИ
Для проверки соответствия проводов и шнуров требованиям настоящего стандарта устанавливают следующие виды контрольных испытаний приемо-сдаточные, периодические, типовые.
5.1 Приемо-сдаточные испытания
5.1.1 Провода и шнуры предъявляют к приемке партиями. За партию принимают провода и шнуры одного маркоразмера, изготовленные из одного материала, на однотипном технологическом оборудовании, одновременно предъявляемые к приемке.
Объем партии должен быть
— от 0,5 до 20 км — для проводов и шнуров, поставляемых строительными длинами;
— от 10 до 10000 шт. — для шнуров, поставляемых мерными длинами.
5.1.2 Состав испытаний, деление его на группы должны соответствовать указанным в таблице 11.
Таблица 11

Группа
Вид испытания
Пункт
Объем

испытаний
или проверки
технических требований
методов испытаний
выборки от партии

С-1
Проверка маркировки и упаковки
4.2.1-4.2.4 (за исключением качества маркировки), 4.3.1, 4.3.2
6.6.1, 6.6.3
5%, но не менее одной бухты (барабана, ящика, коробки)

С-2
Проверка конструктивных размеров
3.2, 4.1.1.1-4.1.1.3 (кроме разделяемости жил), 4.1.1.6, 4.1.1.7
6.1.2
5%, но не менее одной бухты (барабана, ящика, коробки)

Проверка отделяемости оболочки от изоляции жил
4.1.1.6
6.1.5
То же

Проверка отделяемости изолированных жил
4.1.1.7
6.1.5
»

С-3
Испытание напряжением
4.1.2.1
6.2.1
100%

Определение электрического сопротивления токопроводящей жилы
4.1.2.5
6.2.3
3%, но не менее одной бухты (барабана, ящика, коробки)

Примечания 1 Испытания или проверки мерных шнуров марок ШОГ и ШОГ-С проводят на строительных длинах шнура марки ШОГ до их резки на мерные длины. 2 Испытания и проверки по группам проводят на одной выборке.

Испытания проводов и шнуров (кроме шнура марки ШОГ-С по 4.1.1.7 и 4.1.2.1) проводят по плану сплошного или выборочного одноступенчатого контроля в соответствии с таблицей 11 с приемочным числом C = 0. Выборки составляются случайным отбором.
5.1.3 Испытание шнура марки ШОГ-С на соответствие требованиям 4.1.1.7 и 4.1.2.1 должно проводиться по плану выборочного двухступенчатого контроля на выборках n1 = n2 = 3, составленных случайным отбором, с приемочным числом C1 = 0 и браковочным числом C2 = 2 для первой выборки и приемочным числом C3 = 1 для суммарной (n1 и n2) выборки.
5.1.4 Испытания проводов и шнуров на соответствие требованиям 3.3, 4.1.1.1 и 4.1.1.5 проводят в процессе производства методом контроля по 6.1.1 и 6.1.2.
5.2 Периодические испытания
5.2.1 Состав испытаний и деление его на группы должны соответствовать указанным в таблице 12.
Таблица 12

Группа
Вид испытания и проверки
Пункт

испытаний

технических требований
методов контроля

П-1
Определение стойкости поливинилхлоридной изоляции и оболочки к деформации при повышенной температуре, растрескиванию
4.1.3.2
6.3.2

Определение прочности при растяжении и относительного удлинения при разрыве поливинилхлоридной изоляции и оболочки
4.1.3.1
6.3.1

Определение физико-механических показателей резиновой изоляции и оболочки
4.1.3.3, 4.1.3.4
6.3.3

Проверка качества маркировки, выполненной краской
4.2.2
6.6.2

Испытание на нераспространение горения
4.1.4.5
6.4.5

Испытание на стойкость к воздействию максимальной температуры при эксплуатации
4.1.4.2
6.4.2

Определение износоустойчивости оплетки к истиранию
4.1.3.9
6.3.8

Испытание шнура марки ШОГ на растяжение
4.1.3.6
6.3.5

Определение эластичности спиральных шнуров
4.1.3.8
6.3.7

Испытание на износоустойчивость спиральных шнуров
4.1.3.7
6.3.6

Проверка стойкости оболочки проводов марок ПРМ и ПСГ к воздействию масла
4.1.4.4
6.4.4

П-2
Испытание на холодоустойчивость
4.1.4.3
6.4.3

Испытание на стойкость к знакопеременным изгибам
4.1.5.1
6.5.1

Определение разделяемости жил шнуров с параллельно уложенными жилами
4.1.1.3
6.1.3

Определение плотности наложения изоляции
4.1.1.4
6.1.4

П-3
Проверка электрического сопротивления изоляции
4.1.2.4
6.2.2

Испытание напряжением после выдержки в воде
4.1.2.2, 4.1.2.3
6.2.1

5.2.2 Испытания проводят раз в 12 мес, если другие сроки не указаны для конкретных испытаний.
5.2.3 Испытания по группам проводят на отдельных выборках.
5.2.4 Испытания по группе П-1, кроме испытания на соответствие 4.1.3.1 и 4.1.3.2, проводят по планам выборочного одноступенчатого контроля при приемочном числе C = 0 не менее чем на пяти образцах, отобранных от разных бухт или барабанов, выдержавших приемо-сдаточные испытания. Испытания на соответствие 4.1.3.1 и 4.1.3.2 должны проводиться не менее чем на двух образцах.
Испытания по группе П-1 и 4.1.4.3 и 4.1.5.1 должны проводиться на отдельных образцах один раз в 36 мес.
5.2.5 Испытания по группам П-2, П-3 проводят по плану выборочного двухступенчатого контроля с объемом выборки n1 = 5, n2 = 10 образцов.
Для первой выборки приемочное число C1 = 0, браковочное число C2 = 2. При числе дефектов первой выборки, равному 1, проверяют вторую выборку. Приемочное число суммарной (n1 и n2) выборки C3 = 1. В выборки включают случайным отбором образцы от партий текущего выпуска.
5.2.6 Провода и шнуры, подвергавшиеся периодическим испытаниям, отгрузке не подлежат.
5.3 Типовые испытания
5.3.1 Типовые испытания проводит предприятие-изготовитель с целью проверки соответствия проводов и шнуров требованиям настоящего стандарта при изменении конструкции, технологии, применяемых материалов, если эти изменения могут оказать влияние на их качество.
Испытания проводят по программе, утвержденной в установленном порядке. По результатам испытаний, оформленных протоколом или актом, принимают решение о возможности и целесообразности внесения изменений в техническую документацию.
5.4 Потребитель проводит входной контроль качества проводов и шнуров на соответствие требованиям настоящего стандарта на 3% барабанов, бухт, ящиков или мерных отрезков проводов и шнуров от партии, но не менее 3 шт.
За партию принимают число барабанов, бухт, ящиков с проводами или шнурами, полученное потребителем по одному сопроводительному документу.
При получении неудовлетворительных результатов испытаний хотя бы по одному показателю, по этому показателю проводят повторное испытание на удвоенной выборке числа барабанов, бухт, ящиков, взятой от той же партии. Результаты повторного испытания распространяют на всю партию.

6 МЕТОДЫ КОНТРОЛЯ
Все испытания, если нет особых указаний, должны проводиться в нормальных климатических условиях по ГОСТ 15150.
Испытания шнуров марки ШОГ-С на соответствие требованиям настоящего стандарта, за исключением 4.1.2.1, 4.1.3.7 и 4.1.3.8, должны проводиться до их навивания.
6.1 Проверка конструкции
6.1.1. Проверку конструктивных элементов проводов и шнуров, качество поверхности и расцветки жил по 4.1.1.1-4.1.1.3, 4.1.1.5-4.1.1.10 проводят внешним осмотром без применения увеличительных приборов.
6.1.2 Проверку конструктивных размеров проводов и шнуров по 3.2, 3.3, 4.1.1.1-4.1.1.3, 4.1.1.5-4.1.1.7 проводят по ГОСТ 12177.
Проверку овальности проводят измерением диаметра в одном и том же сечении в трех местах, примерно через 120°. Овальность q, %, определяют по формуле
, (2)
где Dd — разность между максимальным и минимальным значениями диаметра, мм;
Dmax — максимальное значение диаметра по таблице 2, мм.
(Измененная редакция, Изм. N 1).
6.1.3 Разделяемость жил шнуров с параллельно уложенными жилами по 4.1.1.3 проверяют на образцах длиной (170±30) мм.
Изоляцию между жилами надрезают на расстоянии 50-60 мм и при помощи разрывной машины со скоростью движения зажима 5 мм/с разделяют жилы.
Образцы считают выдержавшими испытание, если усилие разделения находится в пределах, указанных в 4.1.1.3.
6.1.4 Плотность наложения изоляции по 4.1.1.4 определяют на образцах длиной не менее 50 мм. Изоляцию на жилах надрезают по окружности перпендикулярно к оси жилы на расстоянии 25-30 мм от концов образца, после чего ее вручную со стороны надреза снимают с токопроводящей жилы.
Образцы считают выдержавшими испытания, если при внешнем осмотре без применения увеличительных приборов на токопроводящей жиле не обнаружено остатков изоляции и повреждения (отслоения) полуды, если она имеется. В поперечном сечении или на внутренней стороне снятой изоляции должны просматриваться отпечатки проволок жилы.
6.1.5 Проверку отделяемости оболочки (оболочки и заполнения) от изоляции жил по 4.1.1.6 и отделяемости изолированных жил друг от друга по 4.1.1.7 проводят внешним осмотром без применения увеличительных приборов.
Отделяемость проверяют при разделке провода или шнура на длине не менее 50 мм.
(Измененная редакция, Изм. N 1).
6.2 Проверка электрических параметров
6.2.1 Испытание напряжением по 4.1.2.1-4.1.2.3 проводят по ГОСТ 2990. Специальным электродом при испытании (за исключением 4.1.2.1) является вода.
Испытание напряжением изолированных жил проводов и шнуров марок ШВВП, ШВЛ, ШРО, ПВС, ПВСП, ПРС, ПРМ и ПСГ проводят на образце длиной (5,00±0,01) м; с образцов должна быть удалена оболочка.
Испытание напряжением изолированных жил шнура марки ШВП проводят на образце длиной (2,00±0,01) м, при этом в изоляции между жилами должен быть сделан разрез на длине не более 20 мм и жилы должны быть разделаны вручную.
Испытания по 4.1.2.2 проводят на образцах длиной не менее 20 м.
(Измененная редакция, Изм. N 1).
6.2.2 Электрическое сопротивление изоляции проводов и шнуров по 4.1.2.4 определяют по ГОСТ 3345.
6.2.3 Электрическое сопротивление токопроводящих жил постоянному току проводов и шнуров по 4.1.2.5 определяют по ГОСТ 7229.
6.3 Проверка механических параметров
6.3.1 Физико-механические параметры изоляции и оболочки из поливинилхлоридного пластиката по 4.1.3.1 до и после старения определяют по ГОСТ 25018.
Испытание на тепловое старение проводят по следующему режиму.
Образцы должны быть выдержаны в термостате при температуре (80±2)°С в течение 168 ч, после чего вынутые образцы должны быть выдержаны в течение не менее 10 ч при температуре (25±10) °С без прямого воздействия света.
6.3.2 Стойкость поливинилхлоридной изоляции и оболочки к деформации при повышенной температуре и растрескиванию по 4.1.3.2 проверяют по ГОСТ 22220.
Толщина изоляции и оболочки, измеренная по ГОСТ 12177, в месте деформации должна составлять не менее 50% средней толщины, измеренной в двух соседних участках, не подвергавшихся деформации.
6.3.3 Физико-механические показатели резиновых изоляции и оболочки проводов и шнуров по 4.1.3.3, 4.1.3.4 проверяют по ГОСТ 25018.
Прочность при растяжении (fp), Н/мм2, изоляции шнура марки ШРО, изготовленного без заполнения, высчитывают по формуле
, (3)
где P — сила, вызывающая разрыв образца, Н;
S — площадь поперечного сечения образца изоляции, мм2;
K — коэффициент, учитывающий профиль изоляции, равный 1,2.
Испытание на тепловое старение проводят по следующему режиму. Образцы проводов и шнуров должны быть выдержаны в термостате при температуре (70±2) °С в течение 240 ч, после чего вынутые образцы должны быть выдержаны в течение не менее 10 ч при температуре (25±10) °С.
(Измененная редакция, Изм. N 1).
6.3.4 (Исключен, Изм. N 1).
6.3.5 Испытание шнура марки ШОГ на растяжение под действием свободно падающего груза по 4.1.3.6 проводят на приспособлении, схема которого приведена на рисунке 1. Шнур жестко закрепляют одним концом, на расстоянии (500±1,5) мм от точки закрепления к шнуру подвешивают груз. Через жилы пропускают электрический ток. Груз пять раз поднимают до точки закрепления шнура и отпускают.

Рисунок 1 — Схема приспособления для испытания шнуров на растяжение
Во время испытания на должно быть нарушения целостности электрической цепи.
6.3.6 Износоустойчивость спиральных шнуров по 4.1.3.7 проверяют на установке, схема которой приведена на рисунке 2.

Рисунок 2 — Схема установки для испытания износоустойчивости спиральных шнуров
Концы шнура должны быть закреплены на длине (850±10) мм в оправку устройства под углом (p/2+0,01) рад к оси спирали.
Середина шнура должна быть закреплена в устройстве, которое совершает вращательное движение по окружности радиусом (325±5) мм с частотой вращения не менее 1 об/с.
Один оборот устройства соответствует одному циклу испытания.
После испытания не должно быть повреждения изоляции, а сопротивление токопроводящей жилы должно быть не более 1,7 Ом.
6.3.7 Эластичность спиральных шнуров по 4.1.3.8 определяют при температуре окружающей среды (20±5) °С на приспособлении, схема которого приведена на рисунке 3. Шнур закрепляют за первый виток спирали и располагают его по вертикали вдоль шкалы.

Рисунок 3 — Схема приспособления для испытания эластичности спиральных шнуров
Спиральную часть шнура измеряют
— до закрепления шнура в приспособлении, когда шнур находится в горизонтальной плоскости и витки плотно прилегают друг к другу;
— после закрепления шнура в приспособлении, когда шнур находится под действием собственной массы;
— через 1 мин после приложения груза;
— через 1 мин после снятия груза.
6.3.8 Износоустойчивость оплетки при истирании по 4.1.3.9 определяют на трех парах образцов длиной (1±0,01) м. Каждую пару образцов испытывают следующим образом
— наматывают один образец так, чтобы получилось два витка на неподвижном блоке диаметром (40±1) мм, как показано на рисунке 4, причем расстояние между краями блока должно быть таким, чтобы витки были плотными и не смещались относительно блока.

1 — подвижный испытательный образец; 2 — неподвижный испытательный образец;
3 — блок; 4 — груз
Рисунок 4 — Схема установки для испытания износоустойчивости оплетки
Другой образец помещают в углубление, образованное витками, и к одному концу этого образца прикрепляют груз массой (500±10) г. Другой его конец перемещают вверх — вниз на расстоянии 100 мм со скоростью не менее 40 движений в минуту.
После 20000 одиночных движений изоляция закрепленного образца не должна быть видна на общей длине более 10 мм, и этот образец должен выдержать испытание напряжением по 4.1.2.2 в течение 5 мин.
6.4 Проверка стойкости к внешним воздействующим факторам
6.4.1 Испытание резиновых изоляции и оболочки проводов и шнуров на тепловую деформацию по 4.1.4.1 проводят по методике, изложенной в приложении Д.
6.4.2 Испытание на стойкость к воздействию максимальной температуры по 4.1.4.2 проводят по ГОСТ 16962.1 (метод 201.1.1) на образцах длиной не менее 1 м, свернутых в бухту внутренним диаметром, равным от 10 до 12 наружных диаметров шнура или провода (для плоских шнуров диаметр бухты определяют по нижнему размеру), помещенных в камеру тепла до установления температуры испытания.
Испытание шнура марки ШРО должно проводиться на образцах до наложения оплетки.
Время выдержки в камере тепла при температуре (80±2) °С
55 ч — для шнуров марок ШВП, ШРО, ШВД, ШОГ;
90 ч — для проводов и шнуров марок ШВВП, ШВЛ, ПВСП, ПРС, ПРМ, ПСГ, ПВС.
После испытания образцы проводов и шнуров выдерживают в нормальных климатических условиях в течение не менее 2 ч.
Провода и шнуры считают выдержавшими испытания, если на поверхности образцов при осмотре без применения увеличительных приборов не обнаружено трещин.
(Измененная редакция, Изм. N 1).
6.4.3 Испытание на стойкость к воздействию пониженной температуры по 4.1.4.3 проводят по ГОСТ 17491.
Испытанию на изгиб подвергают по четыре образца проводов и шнуров с резиновой и пластмассовой изоляцией (в том числе по два образца после испытания на тепловое старение по режиму в соответствии с 6.3.1 и 6.3.3).
Диаметр стержня должен быть равен четырехкратному наружному диаметру образца. Для плоских шнуров диаметр оправки определяют по меньшему размеру. Диаметр стержня для испытания провода марки ПСГ должен быть равен от 8 до 10 наружных диаметров провода.
Испытанию на стойкость к воздействию пониженной температуры методом удара подвергают образцы проводов и шнуров марок ШВП, ШОГ, ШВВП, ШВЛ, ПВС, ШВД, ПВСП по три образца до и после старения.
(Измененная редакция, Изм. N 1).
6.4.4 Стойкость оболочки проводов марок ПСГ и ПРМ к воздействию масла по 4.1.4.4 проверяют по ГОСТ 25018.
6.4.5 Испытание проводов и шнуров на нераспространение горения по 4.1.4.5, за исключением шнура марки ШОГ, проводят по ГОСТ 12176 (раздел 2).
Испытание шнура марки ШОГ проводят по методике, изложенной в приложении Е.
6.4.6 Проверку стойкости к поражению плесневыми грибами по 4.1.4.6 проводят по ГОСТ 20.57.406 (метод 214-2 для второй группы изделий).
Провода и шнуры считают выдержавшими испытание, если степень биологического обрастания не более трех баллов.
6.4.7 Потерю массы для изоляции и оболочки из поливинилхлоридного пластиката по 4.1.4.7 определяют по методике, изложенной в приложении Г.
6.4.8 Испытание оплетки шнура марки ШРО на теплостойкость по 4.1.4.8 проводят на образцах длиной (300±10) мм, которые выпрямляют и располагают, по возможности, по центральной продольной оси стальной опорной плиты, как показано на рисунке 5, при этом один конец образца должен выступать на (100±10) мм из выводного отверстия.

1 — фиксирующее устройство; 2 — алюминиевый блок; 3 — направляющий стержень;
4 — образец; 5 — стальная опорная плита; 6 — выводное отверстие для образца диаметром 9 мм
Рисунок 5 — Схема приспособления для испытания оплетки на теплостойкость
Алюминиевый блок массой (1000±50) г с гладкими плоскими поверхностями (обработка поверхности — по ГОСТ 2789, класс шероховатости Ra = 50 мкм) выдерживают в камере с электрическим обогревом с естественной циркуляцией воздуха при температуре (260±5) °С не менее 4 ч. После этого блок сразу помещают на образец на (60±3) с. Затем алюминиевый блок снимают с образца.
Шнур считают выдержавшим испытание, если оплетка не расплавилась и не обуглилась.
(Введен дополнительно, Изм. N 1).
6.5 Проверка надежности
6.5.1 Испытание шнура марки ШОГ на стойкость к изгибам по 4.1.5.1 проводят по ГОСТ 12182.8 на образцах длиной не менее 1 м под углом (p/2±0,003) рад с частотой не менее 60 изгибов в минуту.
Испытание проводов и шнуров остальных марок на стойкость к перегибам через систему роликов проводят по ГОСТ 12182.1.
Провода и шнуры считают выдержавшими испытания, если они не имеют повреждений изоляции и оболочки, видимых при внешнем осмотре без применения увеличительных приборов, и выдерживают в течение 5 мин испытание напряжением в соответствии с 4.1.2.2.
6.5.2 Испытания по подтверждению установленной безотказной наработки проводов и шнуров по 4.1.5.2 проводят по методике, указанной в 6.4.2. Время выдержки в камере тепла 550 ч — для шнуров марок ШВП, ШРО, ШВД; 900 ч — для проводов и шнуров марок ШВВП, ШВЛ, ПВС, ПВСП, ПРС. Провода и шнуры считают выдержавшими испытание, если на поверхности образцов на обнаружено трещин, видимых внешним осмотром без применения увеличительных приборов.
Испытание шнура марки ШРО проводят на образцах до наложения оплетки.
(Измененная редакция, Изм. N 1).
6.6 Проверка упаковки и маркировки
6.6.1 Маркировку по 4.2.1-4.2.4 проверяют по ГОСТ 18690 внешним осмотром и измерениями линейкой по ГОСТ 427.
6.6.2 Качество маркировки, выполненное краской, по 4.2.2 проверяют десятикратным протиранием (в двух противоположных направлениях) с усилием (5±0,5) Н ватным или марлевым тампоном, смоченным водой. Проверку проводят в два этапа со сменой тампона после пятикратного протирания. Окрашивание второго тампона при внешнем осмотре без применения увеличительных приборов не допускается. Маркировку, выполненную тиснением или лазерным способом, испытанию не подвергают.
6.6.3 Упаковку по 4.3.1, 4.3.2 проверяют внешним осмотром и взвешиванием на весах с погрешностью не более 5%.

7 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
7.1 Транспортирование и хранение проводов и шнуров должно соответствовать ГОСТ 18690 с дополнениями, изложенными в 7.2.
7.2 Условия транспортирования и хранения проводов и шнуров в части воздействия климатических факторов должны соответствовать условиям хранения группы ЖЗ ГОСТ 15150.

8 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ
8.1 Номинальные токовые нагрузки проводов и шнуров должны соответствовать указанным в приложении Ж.
8.2 Провода и шнуры исполнения У предназначены для эксплуатации при температуре окружающей среды от минус 40 до плюс 40 °С, остальных исполнений — от минус 25 до плюс 40 °С.
8.3 Минимальный радиус изгиба проводов и шнуров при эксплуатации должен быть не менее указанного в 4.1.5.1.

9 ГАРАНТИИ ИЗГОТОВИТЕЛЯ
9.1 Изготовитель гарантирует соответствие качества проводов и шнуров требованиям настоящего стандарта при соблюдении условий эксплуатации, хранения, транспортирования.
9.2 Гарантийный срок эксплуатации — два года со дня ввода проводов и шнуров в эксплуатацию.
Гарантийный срок эксплуатации проводов и шнуров для розничной торговли исчисляется со дня продажи, а для внерыночного потребления — со дня ввода провода или шнура в эксплуатацию.

ПРИЛОЖЕНИЕ А
(рекомендуемое)
ПРЕИМУЩЕСТВЕННЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ ПРОВОДОВ И ШНУРОВ
Таблица А.1

Марка
Преимущественные области применения

ШВП
Для присоединения радиоэлектронной аппаратуры, бытовых осветительных приборов, электроприборов микроклимата, электромеханических бытовых приборов, электровентиляторов и других подобных приборов, если шнур часто подвергается легким механическим деформациям

ШВВП, ШВЛ
Для присоединения приборов личной гигиены и микроклимата, электропаяльников, светильников, кухонных электромеханических приборов, радиоэлектронной аппаратуры, стиральных машин, холодильников и других подобных приборов, эксплуатируемых в жилых и административных помещениях, и для изготовления шнуров удлинительных

ШРО
Для присоединения бытовых электроутюгов

ПВС, ПВСП
Для присоединения электроприборов и электроинструмента по уходу за жилищем и его ремонту, стиральных машин, холодильников, средств малой механизации для садоводства и огородничества и других подобных машин и приборов, и для изготовления шнуров удлинительных

ПРС
То же, и электронагревательных приборов

ШВД
Для декоративных осветительных гирлянд, для неподвижного защищенного монтажа внутри приборов (установок)

ШОГ, ШОГ-С
Для присоединения электробритв, массажных и других подобных приборов с номинальной токовой нагрузкой не более 0,2 А

ПРМ
Для присоединения электроприборов и электроинструмента по уходу за жилищем и его ремонту, средств малой механизации для садоводства и огородничества, электронагревательных приборов, контактируемых с маслами и смазками, и для изготовления шнуров удлинительных

ПСГ
Для передвижных токоприемников и механизмов

(Измененная редакция, Изм. N 1).

ПРИЛОЖЕНИЕ Б
(обязательное)
КОДЫ ОКП И КОНТРОЛЬНЫЕ ЧИСЛА ПРОВОДОВ И ШНУРОВ
Таблица Б.1

Марка провода, шнура
Код ОКЛ
Контрольное число

ШВП
35 5353 0100
03

ШОГ
35 5353 0501
01

ШОГ-С
35 5353 0601
09

ШВД
35 5353 4500
08

ШВВП
35 5353 0300
08

ШВЛ
35 5353 1400
01

ШРО
35 5354 0500
08

ПВСП
35 5513 3500
00

ПВС
35 5513 0200
10

ПРС
35 5514 0200
05

ПРМ
35 5354 3100
08

ПСГ
35 5354 3600
04

ШВП-Т
35 5353 0900
01

ШОГ-Т
35 5353 0531
06

ШОГ-С-Т
35 5353 0631
03

ШВД-Т
35 5353 4600
05

ШВВП-Т
35 5353 2900
04

ШВЛ-Т
35 5353 3100
02

ШРО-Т
35 5354 2300
06

ПВСП-Т
35 5513 3600
08

ПВС-Т
35 5513 2100
05

ПРС-Т
35 5514 2100
00

ПРМ-Т
35 5354 3200
05

ПСГ-Т
35 5354 3700
01

ШВП-У
35 5353 1000
02

ШБВП-У
35 5353 3000
05

ШВЛ-У
35 5353 3200
10

ШРО-У
35 5354 2400
03

ПВСП-У
35 5513 3700
05

ПВС-У
35 5513 2200
02

ПРС-У
35 5514 2200
08

ПРМ-У
35 5354 3300
02

ПСГ-У
35 5354 3800
09

(Измененная редакция, Изм. N 1).
Таблица Б.2 — Девятый и десятый разряды кода маркоразмера

Девятый и десятый разряды кода маркоразмера
Число жил и номинальное сечение, мм2
Девятый и десятый разряды кода маркоразмера
Число жил и номинальное сечение, мм2

04
1х0,50
55
3х2,50

05
1х0,75
56
3х4,00

06
1х1,50
57
3х6,00

07
1х2,50
58
3х10,0

08
1х4,00
59
3х16,0

09
1х6,00
60
3х25,0

10
1х10,0
61
3х35,0

11
1х16,0
62
3х50,0

12
1х25,0
63
3х70,0

Позиция исключена, Изм. N 1
64
3х95,0

14
1х50,0
71
4х0,75

15
1х70,0
72
4х1,00

16
1х95,0
73
4х1,50

17
1х120
74
4х2,50

18
1х150
75
4х4,00

19
1х185
76
4х6,00

20
1х240
77
4х10,0

21
1х300
78
4х16,0

22
1х400
79
4х25,0

Позиция исключена, Изм. N 1
80
4х35,0

33
2х0,50
81
4х50,0

34
2х0,75
82
4х70,0

35
2х1,00
83
4х95,0

36
2х1,50
84
4х120

37
2х2,50
85
4х150

38
2х4,00
91
5х0,75

39
2х6,00
92
5х 1,00

40
2х10,0
93
5х1,50

41
2х16,0
94
5х2,50

42
2х25,0
95
5х4,00

51
3х0,50
96
5х6,00

52
3х0,75
97
5х10,0

53
Зх1,00
98
5х16,0

54
3х1,50
99
5х25,0

(Измененная редакция, Изм. N 1).

ПРИЛОЖЕНИЕ В
(справочное)
РАСЧЕТНАЯ МАССА ПРОВОДОВ И ШНУРОВ
Таблица В.1

Марка
Номинальное
Масса 1 км, кг, при числе жил

провода, шнура
сечение жил, мм2
1
2
3
4
5

ШОГ


19,5


ШВП
0,50

21,0


0,75

27,1


ШВД
0,50
10,3



0,75
13,4



ШРО
0,50

51,4
62,9

0,75

60,8
75,9

1,00

71,0
87,4

1,50

87,3
109

ШВВП
0,50

25,4
36,9

0,75

32,5
47,8

ШВЛ
0,50

37,4
44,4

0,75

46,6
55,3

ПВС
0,75

57,6
68,2
77,1
94,8

1,00

66,4
77,8
93,8
111,0

1,50

88,5
110,9
132,0
164,0

2,50

134,0
167,0
205,0
253,0

ПРС
0,75

66,9
82,7
89,6
110

1,00

80,0
95,2
104,0
126

1,50

119,5
141,6
165,0
195

2,50

160,0
196,0
246,0
300

4,00

221,0
273,0
342,0

ПВСП
0,75

40,4


ПРМ
0,75

74,8
91,4
107,4
130,9

1,00

89,8
104,7
123,2
148,3

1,50

133,4
154,6
195,7
227,9

2,50

199,1
232,9
286,3
348,0

ПСГ
1,00

81,1
95,3
114,5
123,2

1,50
41,1
106,5
125,1
150,1
135,0

2,50
23,8
168,6
196,6
236,1
237,5

4,00
33,9
229,7
261,2
278,0
337,6

6,00
58,0
314,7
376,3
465,4
444,5

10,0
96,8
556,7
676,6
813,9
866,5

16,0
120,0
708,9
843,2
976,1
1019,8

25,0
237,0
1119,2
1367,0
1740,8
1877,8

35,0
333,7

1805,3
2300,5

50,0
478,7

2512,7
2854,3

70,0
673,8

3369,1
4177,6

95,0
888,7

4361,2
5576,7

120
1137,5



150
1414,5



185
1730,6



240
2284,4



300
2853,2



400
3766,2



(Измененная редакция, Изм. N 1).

ПРИЛОЖЕНИЕ Г
(обязательное)
МЕТОДИКА ОПРЕДЕЛЕНИЯ ПОТЕРИ МАССЫ КОМПОЗИЦИЙ
ПОЛИВИНИЛХЛОРИДНОГО ПЛАСТИКАТА
Г.1 Назначение
Методика предназначена для проведения испытаний по определению потери массы композиций поливинилхлоридных пластикатов с изоляции и оболочки проводов и шнуров.
Г.2 Отбор образцов
Г.2.1 Образцы из изоляции и/или оболочки провода или шнура в виде трубок или двусторонних лопаток изготавливают по ГОСТ 25018.
Г.2.2 Масса образца — от 0,1·10-3 до 10 кг; толщина образца — от 0,1 до 4 мм; диаметр образцов в виде трубки — от 1 до 10 мм.
Г.3 Испытательное оборудование
Для испытания применяют
1 термостат с естественной или принудительной циркуляцией воздуха. Воздух должен поступать в термостат таким образом, чтобы он проходил над поверхностью испытуемых образцов и выходил возле верхней части термостата. При заданной температуре испытания в термостате с принудительной циркуляцией воздуха в течение 1 ч должно произойти не менее 8 и не более 20 полных смен объема воздуха. Применять вентилятор внутри термостата не допускается;
2 аналитические весы чувствительностью до 0,1 мг;
3 штампы для изготовления плоских образцов в виде двусторонней лопатки по ГОСТ 25018;
4 эксикатор с селикагелем или аналогичным материалом или сушильный шкаф.
Г.4 Порядок проведения испытания
Г.4.1 Сущность метода заключается в оценке изменений массы образцов после воздействия повышенных температур.
Г.4.2 Подготовленные образцы выдерживают не менее 20 ч при комнатной температуре в сушильном шкафу или эксикаторе с селикагелем или аналогичным материалом.
Г.4.3 Затем каждый образец взвешивают на аналитических весах, при этом массу определяют в миллиграммах с точностью до одного десятичного знака.
Г.4.4 Образцы помещают в термостат, предварительно нагретый до температуры 80 °С, на 7 сут при соблюдении следующих условий
— испытание компаундов различного состава в одно и то же время, в одном и том же термостате должно быть исключено;
— образцы подвешивают вертикально в середине термостата на расстоянии не менее 20 мм друг от друга;
— образцами следует занимать не более 0,5 объема термостата.
Г.4.5 После термической обработки образцы выдерживают в течение 20 ч в сушильном шкафу или эксикаторе при комнатной температуре.
Г.4.6 Затем каждый образец вновь взвешивают на аналитических весах, массу определяют в миллиграммах с точностью до одного десятичного знака.
Г.5 Обработка результатов
Г.5.1 Рассчитывают площадь поверхности каждого образца A, см2, по формулам
а) для трубовидных образцов

где D — средний наружный диаметр образца с точностью до сотых долей, мм;
d — средняя толщина образца с точностью до сотых долей, мм;
l — длина образца, мм;
б) для плоских образцов в виде двусторонней лопатки размерами, соответствующими чертежу 2 ГОСТ 25018

для плоских образцов в виде двусторонней лопатки размерами, соответствующими чертежу 3 ГОСТ 25018

где d — среднее значение толщины образца с точностью до двух десятичных знаков, мм.
Г.5.2 Рассчитывают разницу между значениями масс в миллиграммах, определенными по Г.4.3 и Г.4.6 для каждого образца, и округляют ее до целых единиц.
Г.5.3 Потерю массы каждого образца Q, мг/см2, рассчитывают по формуле

где P — изменение массы образца после термического старения, мг;
A — площадь поверхности, см2.
Г.5.4 Находят среднее значение потери массы по трем образцам. Результат принимают за потерю в массе.
Г.5.5 Среднее значение потери массы не должно превышать 2,0 мг/см2.
После получения результатов испытаний и расположения их в порядке увеличения или уменьшения определяют медиану, которая является средним значением, если число имеющихся результатов нечетное, и усредненным двух средних значений, если число проведенных испытаний четное.

ПРИЛОЖЕНИЕ Д
(обязательное)
МЕТОДИКА ОПРЕДЕЛЕНИЯ ТЕПЛОВОЙ ДЕФОРМАЦИИ
РЕЗИНОВОЙ ИЗОЛЯЦИИ И ОБОЛОЧКИ ПРОВОДОВ И ШНУРОВ
Д.1 Назначение
Методика предназначена для проведения испытания на тепловую деформацию резиновой изоляции и оболочки проводов и шнуров.
Д.2 Отбор образцов
Д.2.1 Образцы и изоляции и/или оболочки проводов и шнуров в виде трубок или двусторонних лопаток изготавливают по ГОСТ 25018.
Д.2.2 Толщина образца в виде двусторонней лопатки — от 0,8 до 2,0 мм; диаметр образца (в виде трубки) — от 1,0 до 10 мм.
Д.3 Аппаратура
Д.3.1 Испытание проводят в термостате.
Д.3.2 Термостат с естественной или принудительной циркуляцией воздуха. Воздух должен поступать в термостат таким образом, чтобы он проходил над поверхностью испытуемых образцов и выходил возле верхней части термостата. При заданной температуре испытания в термостате с принудительной циркуляцией воздуха в течение 1 ч должно произойти не менее 8 и не более 20 полных смен воздуха. Не допускается применять вентилятор внутри термостата.
Д.3.3 Зажимные приспособления предусмотрены таким образом, что каждый образец может быть подвешен в термостате с помощью верхнего зажимного приспособления на образце. Фиксация зажимных приспособлений не должна вызывать герметичной закупорки доступа воздуха с двух концов трубчатого образца во время испытания. С этой целью рекомендуется ввод с одного конца короткого отрезка металлического стержня диаметром, меньшим внутреннего диаметра образца.
Д.4 Порядок проведения испытания
Д.4.1 Сущность метода заключается в измерении длины рабочего участка во время приложения и после снятия нагрузки (механическое напряжение) при повышенных температурах.
Д.4.2 Подготовленные образцы подвешивают в термостате, нагретом до температуры (200±3) °С, а груз, выбранный с учетом площади поперечного сечения образца для установления механического напряжения 0,2 Н/мм2, прикрепляют в зажимных приспособлениях.
Д.4.3 В подвешенном состоянии образцы выдерживают в термостате при заданной температуре 15 мин.
Д.4.4 После 15 мин пребывания образцов в термостате при заданной температуре измеряют на них расстояние между отметками в течение 30 с после открывания дверцы либо через смотровое окно, встроенное в термостат.
Д.4.5 После измерения снимают растягивающую нагрузку, которая воздействует на образец (срезанием образца у зажима), и выдерживают образец вновь в термостате в течение 5 мин при температуре 200 °С.
Д.4.6 После выдержки образцы извлекают из термостата или медленно охлаждают в термостате до температуры окружающей среды, а затем вновь измеряют расстояние между метками.
Д.5 Оценка результатов
Д.5.1 Относительное удлинение образца e, %, после 15 мин нагрева рассчитывают по формуле
(Д1)
где l0 — длина рабочего участка образца до приложения механической нагрузки и выдерживания в термостате, мм;
l1 — длина рабочего участка образца во время приложения механической нагрузки при температуре 200 °С в течение 15 мин, мм.
Д.5.2 Относительное удлинение образца e, %, после охлаждения рассчитывают по формуле
(Д2)
где l0 — длина рабочего участка образца до приложения механической нагрузки и выдерживания в термостате, мм;
l2 — длина рабочего участка образца после снятия нагрузки и охлаждения, мм.
Д.5.3 Определяют среднее арифметическое данных по пяти образцам.
Д.5.4 Среднее арифметическое значение удлинения после испытания образцов в течение 15 мин при установленной температуре с прикрепленным грузом не должно превышать 175%, а после извлечения образца из термостата и его охлаждения среднее арифметическое значение удлинения не должно превышать 25% значения, установленного в стандарте.

ПРИЛОЖЕНИЕ Е
(обязательное)
МЕТОДИКА ИСПЫТАНИЯ ШНУРОВ МАЛЫХ СЕЧЕНИЙ
НА НЕРАСПРОСТРАНЕНИЕ ГОРЕНИЯ
Е.1 Назначение
Методика предназначена для проведения испытаний шнуров с жилами сечением от 0,1 до 0,5 мм2 на соответствие требованиям нераспространения горения в пожароопасных условиях.
Испытания проводят на одиночном проводе или шнуре.
Е.2 Отбор образцов
Е.2.1 От конца провода или шнура отбирают два образца длиной (600±25) мм.
Е.2.2. Если провод или шнур покрыт краской или лаком, то образец перед испытанием следует выдержать в печи при температуре (60±2) °С в течение 4 ч, а затем охладить до температуры окружающей среды.
Е.3 Аппаратура
а) Испытательная металлическая камера, соответствующая указанной на рисунке Е.1.
б) Пропановая горелка, соответствующая рисунку Е.3.
в) Баллон с пропаном с редукционным клапаном и манометром.
г) Секундомер типа С-1-2а или С-1-2б.
д) Электрический прибор (зажигалка).
Е.4 Подготовка к испытанию
Е.4.1 Горелка должна питаться пропаном так, чтобы она давала светящееся пламя длиной (125±25) мм (рисунок Е.2), когда находится в вертикальном положении при закрытом вводе воздуха. Выполнение этого требования должно обеспечиваться давлением в 1 бар на уровне редукционного клапана.

Рисунок Е.1 — Испытательная камера

Рисунок Е.2 — Длина пламени

Рисунок Е.3 — Пропановая горелка
Е.4.2 Горелка должна быть расположена следующим образом. Ось горелки должна составлять угол 45° с осью образца. Расстояние между центром выхода горелки и поверхностью образца, измеренное вдоль оси горелки, должно быть (10±1) мм. Расстояние от точки пересечения оси горелки и оси образца до точки прикрепления груза должно быть (100±10) мм. Расстояние от точки пересечения осей горелки и образца до нижней части верхней крепежной системы не должно превышать 465 мм.
Е.4.3 Необходимо исключить малейший поток воздуха в камере.
Е.5 Проведение испытания
Е.5.1 Образец шнура натягивают и прикрепляют в вертикальном положении к центру металлической камеры. К нижней части образца прикладывают усилие 5 Н/мм2 (сечения шнура) так, чтобы длина шнура между нижним и верхним креплениями составляла (550±25) мм. Пламя направляют так, чтобы оно обволакивало образец. На первый образец пламя должно воздействовать в течение (20±1) с.
Если образец шнура не выдерживает испытания в соответствии с разделом Е.6 настоящей методики в течение времени T, меньшего чем (20±1) с, испытание повторяют на втором образце с длительностью приложения пламени (T-2) с. В зтом случае результат испытания определяют по второму образцу.
Е.6 Оценка результатов
Образец шнура считают выдержавшим испытания, если после прекращения подачи пламени и удаления с поверхности образца копоти обугленные или поврежденные части не достигают нижнего края верхнего зажима менее чем на 50 мм.

ПРИЛОЖЕНИЕ Ж
(обязательное)
НОМИНАЛЬНЫЕ ТОКОВЫЕ НАГРУЗКИ
Таблица Ж1

Номинальное сечение жилы, мм2
Номинальная токовая нагрузка А, не более

Мишурные жилы
0,2

0,50
2,5

0,75
6,0

1,00
10,0

1,50
16,0

2,50
25,0

4,00
32,0

Примечание — Токовые нагрузки проводов и шнуров с сечением жил свыше 4,00 мм2 — в стадии рассмотрения.

(Измененная редакция, Изм. N 1).

ГОСТ 7746-2001
УДК 621.314.224 006.354 Группа Е64
МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
ТРАНСФОРМАТОРЫ ТОКА
Общие технические условия
Current transformers. General specifications
МКС 17.220.20
ОКП 34 1440
Дата введения 2003-01-01
Предисловие
1 РАЗРАБОТАН Открытым акционерным обществом ОАО «Свердловский завод трансформаторов тока»
ВНЕСЕН Госстандартом России
2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 20 от 1 ноября 2001 г.)
За принятие проголосовали

Наименование государства
Наименование национального органа по стандартизации

Азербайджанская Республика
Азгосстандарт

Республика Армения
Армгосстандарт

Республика Беларусь
Госстандарт Беларуси

Республика Грузия
Грузстандарт

Республика Казахстан
Госстандарт Республики Казахстан

Кыргызская Республика
Кыргызстандарт

Республика Молдова
Молдовастандарт

Российская Федерация
Госстандарт России

Республика Таджикистан
Таджикстандарт

Туркменистан
Главгосслужба «Туркменстандартлары»

Республика Узбекистан
Узгосстандарт

Украина
Госстандарт Украины

3 Настоящий стандарт соответствует требованиям международного стандарта МЭК 44-1 1996 «Измерительные трансформаторы. Часть 1. Трансформаторы тока»
4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 13 марта 2002 г. № 92-ст межгосударственный стандарт ГОСТ 7746—2001 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2003 г.
5 ВЗАМЕН ГОСТ 7746-89

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий стандарт распространяется на электромагнитные трансформаторы тока (далее — трансформаторы) на номинальное напряжение от 0,66 до 750 кВ включительно, предназначенные для передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в электрических цепях переменного тока частотой 50 или 60 Гц.
Дополнительные требования к отдельным видам трансформаторов в связи со спецификой их конструкции или назначения (например для каскадных трансформаторов, трансформаторов, предназначенных для работы с нормированной точностью в переходных режимах, для установки в комплектных распределительных устройствах (КРУ), пофазно экранированных токопроводах) следует устанавливать в стандартах, технических условиях, договорах или контрактах (далее — стандартах) на трансформаторы конкретных типов.
Стандарт не распространяется на трансформаторы лабораторные, нулевой последовательности, суммирующие, блокирующие, насыщающиеся.

2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ 2.601—95 Единая система конструкторской документации. Эксплуатационные документы
ГОСТ 8.217—87 Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки
ГОСТ 12.2.007.0—75 Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности
ГОСТ 12.2.007.3—75 Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности
ГОСТ 12.3.019—80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности
ГОСТ 15.001—881) Система разработки и постановки продукции на производство. Продукция производственно-технического назначения
_______________
1) В Российской Федерации действует ГОСТ Р 15.201—2000.
ГОСТ 15.309—98 Система разработки и постановки продукции на производство. Испытания и приемка выпускаемой продукции. Основные положения
ГОСТ 27.003—90 Надежность в технике. Состав и общие правила задания требований по надежности
ГОСТ 403—73 Аппараты электрические на напряжение до 1000 В. Допустимые температуры нагрева частей аппаратов
ГОСТ 1516.1—76 Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции
ГОСТ 1516.2—97 Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции
ГОСТ 1516.3—96 Электрооборудование переменного тока на напряжения от 1 до 750 кВ. Требования к электрической прочности изоляции
ГОСТ 2933—931) Аппараты электрические низковольтные. Методы испытаний
_______________
1) В Российской Федерации действует ГОСТ 2933—83.
ГОСТ 3484.1—88 Трансформаторы силовые. Методы электромагнитных испытаний
ГОСТ 3484.5—88 Трансформаторы силовые. Испытания баков на герметичность
ГОСТ 6581—75 Материалы электроизоляционные жидкие. Методы электрических испытаний
ГОСТ 8024—90 Аппараты и электротехнические устройства переменного тока на напряжение свыше 1000 В. Норма нагрева при продолжительном режиме работы и методы испытаний
ГОСТ 9920—89 (МЭК 694—80, МЭК 815—86) Электроустановки переменного тока на напряжение от 3 до 750 кВ. Длина пути утечки внешней изоляции
ГОСТ 10434—82 Соединения контактные электрические. Классификация. Общие технические требования
ГОСТ 13109—97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения
ГОСТ 14192—96 Маркировка грузов
ГОСТ 15150—69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15543.1—89 Изделия электротехнические. Общие требования в части стойкости к климатическим внешним воздействующим факторам
ГОСТ 15963—79 Изделия электротехнические для районов с тропическим климатом. Общие технические требования и методы испытаний
ГОСТ 16504—81 Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения
ГОСТ 16962.1—89 (МЭК 68-2-1—74) Изделия электротехнические. Методы испытаний на устойчивость к климатическим внешним воздействующим факторам
ГОСТ 16962.2—90 Изделия электротехнические. Методы испытаний на стойкость к механическим внешним воздействующим факторам
ГОСТ 17516.1—90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам
ГОСТ 18425—73 Тара транспортная наполненная. Метод испытания на удар при свободном падении
ГОСТ 18685—73 Трансформаторы тока и напряжения. Термины и определения
ГОСТ 19880—74 Электротехника. Основные понятия. Термины и определения
ГОСТ 20074—83 Электрооборудование и электроустановки. Метод измерения характеристик частичных разрядов
ГОСТ 20690—75 Электрооборудование переменного тока на напряжение 750 кВ. Требования к электрической прочности изоляции
ГОСТ 21130—75 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры
ГОСТ 21242—75 Выводы контактные электротехнических устройств плоские и штыревые. Основные размеры
ГОСТ 23216—78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний
РМГ 29—99 Государственная система обеспечения единства измерений. Метрология. Основные термины и определения

3 ОПРЕДЕЛЕНИЯ
Термины, применяемые в настоящем стандарте, и соответствующие им определения — по РМГ 29, ГОСТ 16504, ГОСТ 18685, ГОСТ 19880, а также следующие
3.1 номинальный коэффициент безопасности приборов Отношение номинального тока безопасности приборов к номинальному первичному току трансформатора.
3.2 номинальный ток безопасности приборов Минимальное значение первичного тока трансформатора, при котором полная погрешность составляет не менее 10 % при номинальной вторичной нагрузке.
3.3 испытание для утверждения типа Вид государственного метрологического контроля вновь разработанного трансформатора, проводимого в целях обеспечения единства измерений, утверждения типа трансформатора и занесения его в Государственный реестр средств измерений.
3.4 испытание на соответствие утвержденному типу Вид государственного метрологического контроля, проводимого периодически в целях определения соответствия выпускаемых из производства трансформаторов утвержденному типу.
3.5 допускаемая область погрешностей Область, за пределы которой не должны выходить погрешности трансформатора.

4 КЛАССИФИКАЦИЯ
4.1 Трансформаторы подразделяют по следующим основным признакам
4.1.1 По роду установки (категории размещения и климатическому исполнению) по ГОСТ 15150.
При размещении трансформаторов внутри оболочек комплектных изделий категории размещения должны соответствовать указанным в таблице 1.
Таблица 1 — Категории размещения трансформаторов, установленных внутри оболочек комплектных изделий

Характеристика среды внутри оболочки
Категория размещения комплектного изделия по ГОСТ 15150

1
2
3
4
5

1 Газовая среда, изолированная от наружного воздуха, или жидкая среда


4
_

2 Газовая среда, не изолированная от наружного воздуха
2
2 или 2.1
3
4
5 или 5.1

4.1.2 По принципу конструкции опорные, проходные, шинные, встроенные, разъемные.
Допускается сочетание в конструкции трансформатора нескольких перечисленных признаков, а также специальное конструктивное исполнение.
4.1.3 По виду изоляции с литой изоляцией, с фарфоровой покрышкой, в пластмассовом корпусе, с твердой изоляцией (кроме фарфоровой и литой) или с полимерной покрышкой, маслонаполненные, газонаполненные.
4.1.4 По числу ступеней трансформации одноступенчатые, каскадные.
4.1.5 По числу вторичных обмоток с одной вторичной обмоткой, с несколькими вторичными обмотками.
4.1.6 По назначению вторичных обмоток для измерения и учета, для защиты1), для измерения и защиты, для работы с нормированной точностью в переходных режимах.
_______________
1) Здесь и далее под словом «защита» подразумевается защита, автоматика, управление и сигнализация.
4.1.7 По числу коэффициентов трансформации с одним коэффициентом трансформации, с несколькими коэффициентами трансформации, получаемыми путем изменения числа витков первичной или (и) вторичной обмотки, а также путем применения нескольких вторичных обмоток с различными числами витков, соответствующих различным значениям номинального вторичного тока.
4.1.8 Признаки по 4.1.2, 4.1.3, 4.1.4, 4.1.6 и их обозначения приведены в таблицах 2 — 4.
Таблица 2

Конструктивное исполнение трансформатора
Условное обозначение

Опорный
О

Проходной
П

Шинный
Ш

Встроенный
В

Разъемный
Р

Одноступенчатый

Каскадный
К

Таблица 3

Вид изоляции
Условное обозначение

С фарфоровой покрышкой
Ф

С твердой и воздушной изоляцией, с полимерной покрышкой

Маслонаполненные
М

Газонаполненные
Г

Литая
Л

В пластмассовом корпусе
П

Таблица 4

Назначение вторичной обмотки трансформатора
Условное обозначение

Для измерений и учета
Указывают класс точности

Для защиты
То же

Для измерений и защиты
»

5 ОСНОВНЫЕ ПАРАМЕТРЫ
5.1 Номинальные параметры трансформатора
а) номинальное напряжение трансформатора Uном (кроме встроенных трансформаторов);
б) номинальный первичный ток трансформатора I1ном;
в) номинальный вторичный ток трансформатора I2ном;
г) номинальный коэффициент трансформаторации трансформатора nном, определяемый по формуле
(1)
д) номинальная вторичная нагрузка S2ном с коэффициентом мощности cos j2 = 1 или cos j2 = = 0,8| — |S2ном (допускается обозначение вторичной нагрузки Z2ном);
е) класс точности трансформатора (для трансформатора с одной вторичной обмоткой) или вторичных обмоток (для трансформатора с несколькими вторичными обмотками);
ж) номинальная предельная кратность вторичной обмотки, предназначенной для защиты, Kном
и) номинальный коэффициент безопасности приборов вторичной обмотки, предназначенной для измерения, -КБном;
к) номинальная частота напряжения сети fном, равная 50 или 60 Гц. Качество напряжения сети — по ГОСТ 13109.
5.2 Значения основных параметров следует выбирать из приведенных в таблице 5.

Таблица 5

Наименование параметра
Значение

1 Номинальное напряжение трансформатора Uном, кВ
0,66; 3; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750

2 Наибольшее рабочее напряжение, кВ
Для номинального напряжения 0,66 кВ — 0,72; для 3 кВ и выше — по ГОСТ 1516.3

3 Номинальный первичный ток трансформатора I1ном, А
1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000; 8000; 10000; 12000; 14000; 16000; 18000; 20000; 25000; 28000; 30000; 32000; 35000; 40000

4 Номинальный вторичный ток I2ном, А
1; 2; 5

5 Наибольший рабочий первичный ток I1нр, A
См. таблицу 10

6 Номинальная вторичная нагрузка S2ном с коэффициентом мощности cos j2 = 1 В×А
1; 2; 2,5

7 Номинальная вторичная нагрузка S2ном с индуктивно-активным коэффициентом мощности cos j2 = 0,8 В×А1)
3; 5; 10; 15; 20; 25; 30; 50; 60; 75; 100

8 Класс точности трансформатора или вторичной обмотки для измерений и учета для защиты
0,1; 0,2; 0,2S2; 0,5; 0,5S2; 1; 3; 5; 103; 5Р; 10Р

9 Номинальная предельная кратность вторичных обмоток для защиты Киом
От 5 до 304

10 Номинальный коэффициент безопасности приборов Кбном, вторичных обмоток для измерений
Устанавливают в стандартах на трансформаторы конкретных типов. Не устанавливают для вторичных обмоток для измерений и защиты

1) Соответствующие значения номинальной вторичной нагрузки Z2ном, Ом, определяют по формуле
(2)
2) Классы точности 0,2S и 0,5S допускаются по согласованию между изготовителем и потребителем трансформаторов, предназначенных для коммерческого учета электроэнергии.
3) Только для встроенных трансформаторов с номинальным первичным током до 100 А.
4) По требованию потребителя в стандартах на трансформаторы конкретных типов допускается устанавливать другие значения.
5.3 Условное обозначение трансформатора

Т
X
Х
Х —
Х
Х-
Х —
ХХ —
Х/Х
ХХ

Климатическое исполнение и категория размещения по ГОСТ 15150

Номинальный вторичный ток, А (при наличии у трансформатора нескольких вторичных токов указывают все значения через тире)

Номинальный первичный ток, А (при наличии у трансформатора нескольких первичных токов указывают все значения через тире)

Класс точности (при наличии у трансформатора нескольких вторичных обмоток указывают класс точности каждой из них в виде дроби)

Конструктивный вариант исполнения, если их несколько (арабские или римские цифры)

Категория в зависимости от длины пути утечки внешней изоляции по ГОСТ 9920 (только для трансформаторов категории размещения 1)

Номинальное напряжение, кВ

М (только для модернизированных изделий)

Обозначение по таблице 3

Обозначение по таблице 2

Обозначение трансформатора

Примечания
1 Буквенная часть условного обозначения представляет серию; совокупность буквенного обозначения, значения номинального напряжения, категории внешней изоляции по длине пути утечки и конструктивного варианта исполнения — тип; приведенное выше обозначение в целом — типоисполнение трансформатора.
2 Для встроенных трансформаторов допускается применение упрощенного условного обозначения.
3 В стандартах на трансформаторы конкретных типов допускается в буквенную часть вводить дополнительные буквы, исключать или заменять отдельные буквы (кроме Т) для обозначения особенностей конкретного трансформатора.
Пример условного обозначения опорного трансформатора тока с литой изоляцией на номинальное напряжение 35 кВ, категории II по длине пути утечки внешней изоляции, с вторичными обмотками классов точности 0,5 (одна) и 10Р (три), на номинальный первичный ток 2000 А, номинальный вторичный ток 1 А, климатического исполнения У, категории размещения 1
ТОЛ-35 — II- 0,5/10P/10P/10P — 2000/1У1

6 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
6.1 Трансформаторы следует изготавливать в соответствии с требованиями настоящего стандарта и стандартов на трансформаторы конкретных типов по рабочим чертежам, утвержденным в установленном порядке.
Перечень дополнительных справочных данных для трансформаторов, которые по требованию заказчика следует приводить в информационных материалах, указан в приложении А.
6.2 Общие требования

6.2.1 Трансформаторы следует изготавливать в климатических исполнениях по ГОСТ 15150 и ГОСТ 15543.1. Категории размещения — по ГОСТ 15150.
Для трансформаторов категории размещения 4 по ГОСТ 15150 климатическое исполнение и категория — УХЛ4 или О4.
Требования в части стойкости к климатическим внешним воздействующим факторам — по ГОСТ 15543.1.
6.2.2 Трансформаторы должны быть предназначены для работы на высоте до 1000 м над уровнем моря, за исключением трансформаторов на номинальное напряжение 750 кВ, которые должны быть предназначены для работы на высоте до 500 м. Допускается по согласованию между потребителем и изготовителем выпускать трансформаторы для работы на высоте свыше 1000 м.
6.2.3 Устойчивость трансформаторов к воздействию механических факторов внешней среды — по ГОСТ 17516.1. Группу механического исполнения по ГОСТ 17516.1 устанавливают в стандартах на трансформаторы конкретных типов.
Трансформаторы категории размещения 1 должны быть рассчитаны на суммарную механическую нагрузку от ветра скоростью 40 м/с, гололеда с толщиной стенки льда 20 мм и от тяжения проводов не менее
500 Н (50 кгс) — для трансформаторов на номинальное напряжение до 35 кВ включительно;
1000 Н (100 кгс) — для трансформаторов на номинальное напряжение 110 — 220 кВ;
1500 Н (150 кгс) — для трансформаторов на номинальное напряжение 330 кВ и выше.
При этом значения испытательных статических нагрузок должны составлять1)
1250 Н (125 кгс) — для трансформаторов на номинальное напряжение до 35 кВ включительно;
2000 Н (200 кгс) — для трансформаторов на номинальное напряжение 110 — 220 кВ;
2500 Н (250 кгс) — для трансформаторов на номинальное напряжение 330 кВ и выше.
______________
1) Значения испытательных статических нагрузок указаны для трансформаторов, техническое задание на которые утверждено после 01.01.2001.
Значения испытательных статических нагрузок учитывают возникающие экстремальные динамические нагрузки на контактных выводах трансформатора, например при токах короткого замыкания, не превышающие более чем в 1,4 раза испытательные статические нагрузки.
6.2.4 Рабочее положение трансформаторов в пространстве должно быть указано в стандартах на трансформаторы конкретных типов.
6.3 Требования к изоляции

6.3.1 Изоляция первичной обмотки (первичной цепи) трансформаторов на номинальные напряжения от 3 до 500 кВ включительно должна соответствовать требованиям ГОСТ 1516.1 и ГОСТ 1516.3, а на номинальное напряжение 750 кВ — требованиям ГОСТ 1516.3 и ГОСТ 20690.
К изоляции первичной обмотки (первичной цепи) маслонаполненных трансформаторов на номинальное напряжение 330 кВ и выше по согласованию между потребителем и изготовителем допускается предъявление требований по воздействию срезанного грозового и многократных срезанных импульсов.
Изоляция первичной обмотки (первичной цепи) трансформаторов на номинальное напряжение 0,66 кВ должна выдерживать воздействие испытательного напряжения 3 кВ частотой 50 Гц в течение 1 мин.
Дополнительные требования к изоляции трансформаторов категорий размещения 2 и 5, имеющих собственную первичную обмотку, определяемые конденсацией влаги (выпадением росы), и длина пути утечки внешней изоляции должны быть указаны в стандартах на трансформаторы конкретных типов.
6.3.2 Для трансформаторов категории размещения 1 по ГОСТ 15150 длина пути утечки внешней изоляции по ГОСТ 9920 должна быть установлена в стандартах на трансформаторы конкретных типов.
6.3.3 Междусекционная изоляция секций первичных и вторичных обмоток, предназначенных для изменения коэффициента трансформации трансформаторов, должна выдерживать в течение 1 мин воздействие испытательного напряжения 3 кВ частотой 50 Гц.
6.3.4 Изоляция вторичных обмоток трансформаторов относительно заземленных частей, а для трансформаторов с несколькими вторичными обмотками также относительно друг друга, должна выдерживать в течение 1 мин воздействие испытательного напряжения 3 кВ частотой 50 Гц.
6.3.5 Газовая изоляция первичной обмотки трансформаторов, работающих при избыточном давлении газа, должна в течение 15 мин выдерживать воздействие напряжения, равного 1,1, при избыточном давлении газа, равном нулю, где Uнp — наибольшее рабочее напряжение.
6.3.6 Уровень частичных разрядов изоляции первичной обмотки трансформаторов на номинальное напряжение 3 кВ и выше уровня изоляции «а» по ГОСТ 1516.3 должен соответствовать приведенным в таблице 6.
Таблица 6

Вид изоляции
Напряжение измерения
Допускаемый уровень, пКл

Бумажно-масляная

10

Газовая1
1,1
10

Твердая

20

1 Не распространяется на трансформаторы с воздушной изоляцией, свободно сообщающейся с наружным воздухом.
Тангенс угла диэлектрических потерь конденсаторной бумажно-масляной изоляции первичной обмотки трансформаторов при температуре (25 ± 10) °С и напряжении не должен превышать 0,0035, а его прирост в диапазоне напряжений от до не должен превышать 0,0003.
6.3.7 Междувитковая изоляция обмоток трансформатора должна выдерживать без пробоя или повреждения в течение 1 мин индуктируемое в них напряжение при протекании по первичной обмотке тока, значение которого должно быть номинальным, если амплитуда напряжения между выводами разомкнутой вторичной обмотки не превышает 4,5 кВ или меньше номинального; при этом амплитуда напряжения между выводами разомкнутой вторичной обмотки должна быть 4,5 кВ.
6.3.8 При нормальных климатических условиях по ГОСТ 15150 значение сопротивления изоляции обмоток трансформаторов должно быть не менее
40 МОм — для первичных обмоток трансформаторов на номинальное напряжение 0,66 кВ;
1000 МОм — для первичных обмоток трансформаторов на номинальные напряжения 3 — 35 кВ;
3000 МОм — для первичных обмоток трансформаторов на номинальные напряжения 110 — 220 кВ;
5000 МОм — для первичных обмоток трансформаторов на номинальные напряжения 330 кВ и выше;
20 МОм — для вторичных обмоток трансформаторов на номинальное напряжение 0,66 кВ;
50 МОм —для вторичных обмоток трансформаторов на номинальные напряжения 3 кВ и выше.
6.3.9 Диэлектрические показатели качества масла маслонаполненных трансформаторов должны соответствовать указанным в таблице 7.
Таблица 7

Показатель качества масла
Номинальное
Предельное допускаемое значение

напряжение
показателя качества масла

трансформатора, кВ
для заливки в трансформатор
после заливки в трансформатор

Пробивное напряжение по ГОСТ 6581, кВ, не менее

До 15 включ.
30
25

До 35 включ.
35
30

110 — 150
60
55

220 — 500
65
60

750
70
65

Тангенс угла диэлектрических потерь

при 90 °С по ГОСТ 6581, %, не более
До 220 включ.
1,7
2,0

Св. 220
0,5
0,7

6.4 Метрологические характеристики

6.4.1 Метрологические характеристики следует устанавливать для следующих рабочих условий применения трансформаторов
а) частота переменного тока (50 ± 0,5) Гц или (60 ± 0,5) Гц;
б) первичный ток — в соответствии с 6.4.2 и 6.4.3;
в) значение вторичной нагрузки — в соответствии с 6.4.2 и 6.4.3;
г) температура окружающего воздуха — в соответствии с климатическим исполнением и категорией размещения, если иное не указано в стандартах на трансформаторы конкретных типов;
д) высота установки трансформаторов над уровнем моря — по 6.2.2.
6.4.2 Пределы допускаемых погрешностей вторичных обмоток для измерений и учета в рабочих условиях применения по 6.4.1 при установившемся режиме должны соответствовать значениям, указанным в таблице 8.
Погрешности не должны выходить за пределы допускаемых областей.
Допускаемые области погрешностей для различных классов точности приведены в приложении Б.
Для трансформаторов с номинальными вторичными нагрузками 1; 2; 2,5; 3; 5 и 10 В×А нижний предел вторичных нагрузок — 0,8; 1,25; 1,5; 1,75; 3,75 и 3,75 В×А соответственно.
Таблица 8

Класс точности
Первичный ток, %
Предел допускаемой погрешности
Предел нагрузки, %

номинального значения
токовой, %
угловой
номинального значения

5
±0,4
±15′
±0,45 срад

0,1
20
±0,2
±8′
±0,24 срад

100-120
±0,1
±5′
±0,15 срад

5
±0,75
±30′
±0,9 срад

0,2
20
±0,35
±15′
±0,45 срад

100-120
±0,2
±10′
±0,3 срад

1
±0,75
±30′
±0,9 срад

5
±0,35
±15′
±0,45 срад

0,2S
20
±0,2
±10′
±0,3 срад

100
±0,2
±10′
±0,3 срад

120
±0,2
±10′
±0,3 срад
25—100

5
±1,5
±90′
±2,7 срад

0,5
20
±0,75
±45′
± ,35 срад

100-120
±0,5
±30′
±0,9 срад

1
±1,5
±90′
±2,7 срад

5
±0,75
±45′
±1,35 срад

0,5S
20
±0,5
±30′
±0,9 срад

100
±0,5
±30′
±0,9 срад

120
±0,5
±30′
±0,9 срад

5
±3,0
± 180′
±5,4 срад

1
20
±1,5
±90′
±2,7 срад

100-120
±1,0
±60′
±1,8 срад

3

±3,0

5
50-120
±5,0
Не нормируют
50-100

10

±10

6.4.3 Пределы допускаемых погрешностей вторичных обмоток для защиты в рабочих условиях применения по 6.4.1 при установившемся режиме и номинальной вторичной нагрузке должны соответствовать указанным в таблице 9.

Таблица 9

Класс
Предел допускаемой погрешности

точности
при номинальном первичном токе
при токе номинальной предельной кратности

токовой, %
угловой
полной, %


±1
±60′
±1,8 срад
5

10Р
±3
Не нормируют
10

6.4.4 По согласованию между потребителем и изготовителем в эксплуатационной документации на трансформаторы должны быть указаны зависимости погрешностей от влияющих факторов первичного тока, вторичной нагрузки, частоты и температуры, а также динамические характеристики. Зависимости погрешностей от каждого влияющего фактора определяют при номинальном значении всех остальных влияющих факторов и с указанием точности определения.
6.5 Значение тока намагничивания

6.5.1 Ток намагничивания вторичных обмоток для измерения, полученный при испытаниях по 9.8 и выраженный в процентах значения, равного произведению номинального вторичного тока на номинальный коэффициент безопасности приборов, должен быть не менее 10 %.
6.5.2 Ток намагничивания вторичных обмоток для защиты, полученный при испытаниях по 9.8 и выраженный в процентах значения, равного произведению номинального вторичного тока на номинальную предельную кратность, не должен превышать значений полной погрешности, указанных в таблице 9.
6.5.3 Допускаемое значение тока намагничивания и соответствующее ему расчетное значение напряжения должны быть установлены предприятием-изготовителем с учетом требований 6.5.1, 6.5.2 и указаны в эксплуатационной документации на конкретные трансформаторы.
6.5.4 Измеренные значения тока намагничивания вторичных обмоток должны быть записаны в паспорт на конкретный трансформатор.
6.6 Требования к нагреву

6.6.1 При продолжительном режиме протекания наибольших рабочих первичных токов (номинальных токов длительного режима) трансформаторы (за исключением встроенных, работающих в трансформаторном масле) на номинальные напряжения свыше 0,66 кВ должны соответствовать требованиям ГОСТ 8024, а трансформаторы на номинальное напряжение 0,66 кВ — требованиям ГОСТ 403.
Для трансформаторов, эксплуатируемых при температурах окружающего воздуха, отличающихся от указанных ГОСТ 15150 и 15543.1, верхнее рабочее значение и (или) эффективное значение температуры окружающего воздуха должны быть установлены в стандартах на трансформаторы конкретных типов.
Для встроенных трансформаторов, устанавливаемых в масляные выключатели, силовые масляные трансформаторы, автотрансформаторы или реакторы, и погружаемых в масло, предельно допустимые превышения температуры над температурой масла (90 °С для масляных выключателей и 95 °С для силовых масляных трансформаторов, автотрансформаторов или реакторов) при продолжительном режиме не должны превышать
10 °С — для обмоток;
15 °С — для магнитопроводов.
Для встроенных трансформаторов на номинальные первичные токи свыше 10000 А при температуре масла, окружающего трансформатор, ниже 90 °С для масляных выключателей и ниже 95 °С для силовых масляных трансформаторов, автотрансформаторов или реакторов допустимые превышения температуры могут быть соответственно увеличены, но не более чем на 10 °С.
6.6.2 Наибольшие рабочие первичные токи трансформаторов на номинальные токи до 10000 А должны соответствовать указанным в таблице 10.
Для трансформаторов, у которых эффективное значение температуры окружающей среды по ГОСТ 15543.1 превышает 40 °С, значения наибольших рабочих первичных токов могут быть меньше указанных в таблице 10 и их следует устанавливать в стандартах на трансформаторы конкретных типов.
Для трансформаторов на номинальные первичные токи свыше 10000 А, предназначенных для генераторов или синхронных компенсаторов, наибольший рабочий первичный ток может быть больше или меньше номинального тока, но не менее наибольшего длительного тока генератора или синхронного компенсатора.
По согласованию между потребителем и изготовителем допускается кратковременное, не более 2 ч в неделю, повышение первичного тока на 20 % по отношению к наибольшему рабочему первичному току.

Таблица 10

Наименование параметра
Значение, А

Номинальный первичный ток I1ном
1
5
10
15
20
30
40
50
75
80
100
150
200
300
400
500
600
750
800
1000
1200
1500
2000
3000
4000
5000
6000
8000
10000

Наибольший рабочий первичный ток I1нр
1
5
10
16
20
32
40
50
80
80
100
160
200
320
400
500
630
800
800
1000
1250
1600
2000
3200
4000
5000
6300
8000
10000

6.7 Требования к стойкости при токах короткого замыкания

6.7.1 Трансформаторы на напряжение свыше 0,66 кВ должны быть устойчивы к электродинамическому1) и термическому воздействиям токов короткого замыкания, параметры которых не превышают установленных значений
а) тока электродинамической стойкости iд или его кратности Kд по отношению к амплитуде номинального первичного тока;
б) тока термической стойкости Iт или его кратности Кт по отношению к номинальному первичному току;
в) времени протекания тока tк, равного
1 или 3 с — для трансформаторов на номинальные напряжения до 220 кВ включительно;
1 или 2 с — для трансформаторов на номинальные напряжения 330 кВ и выше.
__________________
1) К шинным, встроенным и разъемным трансформаторам требования по электродинамической стойкости не предъявляют.

6.7.2 Между значениями iд и Iт должно быть соблюдено соотношение iд ⊃3; 1,8 × Iт.
6.7.3 В стандартах на трансформаторы конкретных типов должны быть установлены значение тока термической стойкости или его кратность, время протекания тока, а также значение тока электродинамической стойкости или его кратность.
6.8 Значение сопротивления вторичных обмоток постоянному току должно быть установлено изготовителем и указано в эксплуатационной документации.
6.9 Обозначение выводов обмоток

Выводы первичных и вторичных обмоток и вторичные обмотки трансформаторов следует обозначать в соответствии с таблицей 11.
Линейные выводы первичной обмотки, а также соответствующие им стороны шинных, встроенных и разъемных трансформаторов, не имеющих собственной первичной обмотки обозначают Л1 и Л2.
Обозначения наносят таким образом, чтобы в один и тот же момент времени выводы Л1, Н1, …, Нn и И1, …, Иn имели одинаковую полярность, т.е. чтобы при направлении тока в первичной обмотке от Н1, …, Нn к К1, К2 …, Л2 вторичный ток проходил по внешней цепи (приборам) от И1 к И2 …, Иn.
Обозначения выполняют прописными буквами русского алфавита в сочетании с цифрами. Цифры располагают в одну строку с буквами (например Л1) или в индексе (например Л1).
Таблица 11

Обмотка трансформатора
Обозначения выводов и обмоток

Первичная
С одной секцией Л1 Л2
С несколькими секциями Л1 К1 Н2 К2 Нn Л2

Вторичная
Трансформатор с одной вторичной обмоткой без ответвлений ответвлениями

Вторичная
Трансформатор с несколькими вторичными обмотками без ответвлений с ответвлениями

6.10 Требования к конструкции

6.10.1 Металлические части трансформатора, подверженные коррозии под воздействием климатических факторов внешней среды, должны иметь защитное покрытие.
6.10.2 Контактные выводы первичной обмотки трансформаторов должны соответствовать требованиям ГОСТ 10434, а трансформаторов категории размещения 1 также требованиям ГОСТ 21242.
6.10.3 Контактные выводы вторичных обмоток трансформаторов должны соответствовать требованиям ГОСТ 10434.
Контактные выводы вторичных обмоток встроенных трансформаторов могут быть расположены в конструкции изделия, в которое встроен трансформатор.
6.10.4 Трансформаторы должны иметь контактную площадку для присоединения заземляющего проводника и заземляющий зажим в соответствии с требованиями ГОСТ 21130 и ГОСТ 12.2.007.3. Возле заземляющего зажима должен быть знак заземления по ГОСТ 21130.
Заземляющие зажимы трансформаторов исполнений Т и О должны также соответствовать требованиям ГОСТ 15963.
Требования настоящего пункта не распространяются на встроенные трансформаторы, трансформаторы с корпусом из литой смолы или пластмассы, не имеющие подлежащих заземлению металлических частей, а также на трансформаторы, не подлежащие заземлению согласно ГОСТ 12.2.007.0.
6.10.5 Конструкция маслонаполненных трансформаторов должна обеспечивать их герметичность. Стандарты на маслонаполненные трансформаторы должны содержать требования по проверке герметичности конструкции, а на трансформаторы с конденсаторной бумажно-масляной изоляцией также требования к газо- и влагосодержанию заливаемого в трансформаторы масла.
6.10.6 Конструкция трансформаторов на номинальные напряжения 110 кВ и выше должна обеспечивать защиту масла от увлажнения, исключающую его непосредственное соприкосновение с атмосферой.
6.10.7 Маслонаполненный трансформатор должен иметь расширитель, емкость которого должна обеспечивать постоянное наличие в нем масла при всех режимах работы трансформатора в диапазоне рабочих температур. Функцию расширителя могут выполнять верхняя часть фарфоровой покрышки, сильфон или другие устройства.
Маслонаполненные трансформаторы должны быть оснащены указателем уровня масла или аналогичным устройством, позволяющим контролировать уровень масла в трансформаторе с безопасного для обслуживающего персонала расстояния.
При массе масла до 20 кг указатель уровня масла допускается не устанавливать.
Маслонаполненные трансформаторы с массой масла более 10 кг должны быть оснащены арматурой для заливки, отбора пробы и слива масла, в том числе для хроматографического анализа растворенных в масле газов. При этом должно быть предусмотрено плавное регулирование вытекающей струи масла.
6.10.8 Трансформаторы массой более 20 кг должны иметь устройство по ГОСТ 12.2.007.0 для подъема, опускания и удержания их на весу. При невозможности конструктивного выполнения таких устройств в руководстве по эксплуатации должны быть указаны места захвата трансформатора при такелажных работах.
6.10.9 В конструкции трансформаторов, имеющих вторичные обмотки для измерения, должно быть предусмотрено одно или несколько мест для установки пломб или нанесения оттиска клейма о поверке трансформатора по ГОСТ 8.217.
6.10.10 В трансформаторах на напряжение 330 кВ и выше с конденсаторной бумажно-масляной изоляцией должен быть предусмотрен вывод для подключения устройства контроля изоляционных характеристик под рабочим напряжением.
6.10.11 Конструкция газонаполненных трансформаторов должна обеспечивать утечки массы газа не более 1 % за год.
6.10.12 Конструкция газонаполненных трансформаторов должна иметь защиту от чрезмерного увеличения давления газа при аварии, связанной с пробоем внутренней изоляции и горением дуги.
6.10.13 Применяемые в конструкции трансформаторов материалы должны обеспечивать выполнение требований по взрыво- и пожаробезопасности.
6.11 Требования к надежности

6.11.1 В стандартах на трансформаторы конкретных типов следует устанавливать среднюю наработку до отказа в соответствии с ГОСТ 27.003.
6.11.2 Средний срок службы трансформаторов — 25 лет.
6.11.3 В стандартах на трансформаторы конкретных типов должны быть установлены требования к ремонтопригодности.
6.12 Комплектность

6.12.1 Комплектность трансформатора должна быть установлена в стандартах на трансформаторы конкретных типов.
6.12.2 К трансформаторам прилагают эксплуатационную документацию по ГОСТ 2.601 паспорт, руководство по эксплуатации, ведомости ЗИП (при наличии).
Для трансформаторов на номинальное напряжение до 10 кВ по согласованию между изготовителем и потребителем, если это установлено в стандартах на трансформаторы конкретных типов, паспорт может быть заменен этикеткой.
Для трансформаторов на напряжение 0,66 кВ номенклатура эксплуатационной документации может быть сокращена и должна быть установлена в стандартах на трансформаторы конкретных типов.
Число экземпляров эксплуатационных документов, прилагаемых к трансформаторам, должно быть установлено в стандартах на трансформаторы конкретных типов.
6.13 Маркировка

6.13.1 Каждый трансформатор должен иметь табличку (таблички), на которой должны быть указаны
а) товарный знак или наименование предприятия-изготовителя;
б) наименование «трансформатор тока»;
в) тип трансформатора и климатическое исполнение;
г) порядковый номер по системе нумерации предприятия-изготовителя;
д) номинальное напряжение, кВ (кроме встроенных трансформаторов);
е) номинальная частота, Гц (при частоте 50 Гц допускается не указывать);
ж) номер вторичной обмотки (только для трансформаторов с двумя или более вторичными обмотками);
и) номинальный коэффициент трансформации (в виде отношения номинальных токов первичного и вторичного), А;
к) класс точности для вторичных обмоток согласно 6.41);
л) номинальный коэффициент безопасности приборов КБном (для вторичных обмоток, предназначенных для измерения)2);
м) значение номинальной предельной кратности Кном (для вторичных обмоток, предназначенных для защиты)2);
н) номинальная вторичная нагрузка, В×А;
о) масса трансформатора, кг3);
п) обозначение стандарта на трансформаторы конкретных типов или обозначение настоящего стандарта;
р) год выпуска (на трансформаторах, предназначенных для экспорта, не указывают).
____________________
1) Для вторичных обмоток, предназначенных для измерений и защиты, следует указывать оба номинальных класса точности.
2) Для трансформаторов на номинальное напряжение 0,66 кВ допускается Кном и Кбном не указывать, если они приведены в руководстве по эксплуатации.
3) Только для трансформаторов массой от 10 кг и выше, транспортируемых в неразобранном виде.
Примечания
1 Допускается наносить перечисленные данные на одну или несколько табличек, а также частично или полностью на элементы конструкции трансформатора.
2 При недостатке места на табличке допускается данные по перечислениям д), е), и) — о) наносить без указания наименования параметра (например 6 кВ, 50 Гц), при этом данные по перечислениям к) — н) наносят в сочетании и последовательности согласно следующим примерам 30 В×А 5Р 10 (номинальная вторичная нагрузка 30 В×А, номинальный класс точности 5Р, номинальная предельная кратность 10); 20 В×А 0,5 10 (номинальная вторичная нагрузка 20 В×А, номинальный класс точности 0,5, номинальный коэффициент безопасности приборов 10).
3 Допускается, кроме данных, указанных в настоящем пункте, наносить на табличку дополнительную информацию в соответствии со стандартом на трансформаторы конкретных типов.
Для трансформаторов с несколькими вторичными обмотками или с ответвлениями на вторичных обмотках данные по перечислениям и) — н) указывают для каждой вторичной обмотки и каждого ответвления.
Для встроенных трансформаторов, предназначенных для использования внутри другого изделия, табличку (таблички) с техническими данными следует помещать на корпусе этого изделия, а на самих трансформаторах следует указывать
тип встроенного трансформатора;
номинальный коэффициент трансформации (при наличии ответвлений указывают наибольший коэффициент трансформации);
порядковый номер по системе нумерации предприятия-изготовителя.
6.13.2 Части трансформаторов, транспортируемых в разобранном виде, должны иметь маркировку, облегчающую сборку трансформаторов на месте монтажа. Виды и способы нанесения маркировки должны быть указаны в эксплуатационной документации.

6.13.3 Способ нанесения маркировки на таблички, а также способ маркирования выводов обмоток (6.9) должны обеспечивать четкость надписей в течение всего времени эксплуатации трансформатора.
6.13.4 Маркировка транспортной тары — по ГОСТ 14192.
6.14 Упаковка

6.14.1 Все неокрашенные металлические части трансформатора (включая запасные части, при их наличии), подверженные воздействию внешней среды в процессе транспортирования и хранения, должны быть законсервированы с помощью смазок или другим надежным способом на срок хранения 3 г.
6.14.2 Упаковка должна обеспечивать сохранность трансформаторов при их транспортировании. Вид упаковки должен быть предусмотрен в стандартах на трансформаторы конкретных типов.

7 Требования безопасности
7.1 Требования безопасности к конструкции трансформаторов — по ГОСТ 12.2.007.0 и ГОСТ 12.2.007.3.
7.2 Требования безопасности при испытаниях трансформаторов — по ГОСТ 8.217 и ГОСТ 12.3.019.

8 ПРАВИЛА ПРИЕМКИ
8.1 Для проверки соответствия трансформаторов требованиям настоящего стандарта и стандарта на трансформаторы конкретных типов следует проводить испытания для утверждения типа; на соответствие утвержденному типу; квалификационные; приемосдаточные; периодические; типовые.
8.2 Объем испытаний и проверок, в зависимости от конструктивных особенностей и назначения трансформатора, следует выбирать по таблице 12 и устанавливать в стандартах на трансформаторы конкретных типов.
Таблица 12

Наименование испытания и проверки
Необходимость проведения испытаний
Пункт настоящего стандарта

для утверждения типа
на соответствие утвержденному типу
квалификационных
приемосдаточных
периодических
Технические требования
Методы контроля

1 Проверка на соответствие требованиям сборочного чертежа
+
+
+
+
+
6.1; 6.9; 6.12.2
9.1

2 Испытание электрической прочности изоляции первичной обмотки одноминутным напряжением промышленной частоты


+
+
+
6.3.1
9.2.1

3 Испытание изоляции первичной обмотки напряжением грозового импульса1)


+


6.3.1
9.2.1

4 Испытание изоляции маслонаполненных трансформаторов с номинальным напряжением 330 кВ и выше срезанным грозовым импульсом и многократными срезанными импульсами


О


6.3.1
9.2.1

5 Испытание электрической прочности изоляции трансформаторов с номинальным напряжением 330 кВ и выше напряжением коммутационного импульса


+

+
6.3.1
9.2.1

6 Испытание внутренней изоляции первичной обмотки на стойкость к тепловому пробою


О


6.3.1
9.2.1

7 Проверка длины пути утечки


+


6.3.1; 6.3.2
9.2.2

8 Испытание междусекционной изоляции секционированных обмоток


+
+
+
6.3.3
9.2.3

9 Испытание изоляции первичной обмотки газонаполненных трансформаторов при остаточном давлении газа, равном нулю


+

+
6.3.5
9.2.1

10 Испытания электрической прочности изоляции вторичных обмоток одноминутным напряжением промышленной частоты


+
+
+
6.3.4
9.2.4

11 Измерение уровня частичных разрядов трансформаторов с уровнем изоляции «а» по ГОСТ 1516.3


+
+
+
6.3.6
9.2.5

12 Испытание междувитковой изоляции


+
+
+
6.3.7
9.2.6

13 Измерение сопротивления изоляции обмоток


+
О
+
6.3.8
9.3

14 Испытание пробы масла масляных трансформаторов определение пробивного напряжения


+
+
+
6.3.9
9.4

определение тангенса угла диэлектрических потерь масла трансформаторов класса напряжения 110 кВ и выше


+
+
+
6.3.6; 6.3.9
9.2.5; 9.4

определение влаго- и газосодержания, хроматографический анализ


+
+
+
6.10.5
9.4

15 Проверка полярности
+
+
+
+
+
6.9
9.5

16 Определение токовых и угловых погрешностей
+
+
+
+
+
6.4.2
9.5

17 Проверка предельной кратности (определение полной погрешности) вторичных обмоток для защиты
+
+
+

+
5.1; 6.4.3
9.6

18 Проверка коэффициента безопасности приборов вторичных обмоток для измерений
+
+
+

+
5.1
9.6

19 Определение количественной утечки газа газонаполненных трансформаторов


+
+
+
6.10.11
9.7

20 Определение тока намагничивания вторичных обмоток
+
+
+
+
+
6.5
9.8

21 Испытание на нагрев при продолжительном режиме работы


+


6.6
9.9

22 Испытание на стойкость к токам короткого замыкания (испытания на электродинамическую и термическую стойкость)


+


6.7
9.10

23 Измерение сопротивления вторичных обмоток постоянному току


+
О
+
6.8
9.11

24 Испытание маслонапол-ненных трансформаторов на герметичность


+
+
+
6.10.5
9.12

25 Испытания на устойчивость к воздействию климатических факторов внешней среды
+
+
+

О
6.2.1
9.13

26 Испытания на устойчивость к воздействию механических факторов


+

О
6.2.3
9.13

27 Испытание на прочность при транспортировании


+


6.14.2; 10.1
9.14

28 Испытание упаковки на сбрасывание


+


6.14.2; 10.1
9.15

29 Подтверждение средней наработки до отказа




+
6.11.1
9.16

30 Испытание газонаполненных трансформаторов на взрывобезопасность


+


6.10.12
9.17

1) Для шинных трансформаторов не проводят.
Примечание — Знак «+» означает, что испытание проводят; знак «—» — не проводят; буква «О» означает, что испытание проводят, если это указано в стандарте на трансформатор конкретного типа.
Испытания трансформаторов, предназначенных для работы при частотах 50 и 60 Гц, на соответствие всем требованиям настоящего стандарта проводят при частоте 50 Гц, о чем указывают в паспорте. При этом результаты испытаний трансформаторов, предназначенных для работы при частоте 60 Гц, не корректируют, кроме результатов испытаний на нагрев при продолжительном режиме работы и на стойкость к токам короткого замыкания, которые следует оценивать с учетом 9.9.7 и 9.10.3 соответственно.
8.3 Общие положения

8.3.1 При испытаниях квалификационных, периодических, типовых, для утверждения типа и на соответствие утвержденному типу отдельные испытания, не влияющие на результаты других испытаний, предусмотренных в таблице 12, допускается проводить на разных трансформаторах (параллельные испытания). Перечень параллельных испытаний следует устанавливать в стандартах на трансформаторы конкретных типов.
8.3.2 Допускается совмещение отдельных видов испытаний, перечисленных в 8.1.
При наличии различных исполнений трансформаторов испытания для утверждения типа, квалификационные, периодические, типовые и на соответствие утвержденному типу следует проводить на типоисполнениях, для которых соответствующие испытания являются наиболее критическими.
8.3.3 Типоисполнения и число трансформаторов, подвергаемых каждому испытанию, следует указывать в стандартах на трансформаторы конкретных типов.
8.3.4 При приемосдаточных испытаниях трансформаторы предъявляют к приемке поштучно или партиями и подвергают проверке сплошным контролем.
8.3.5 Отдельные испытания допускается проводить на сборочных единицах и деталях трансформатора. Допускается по согласованию между потребителем и изготовителем при испытаниях квалификационных, периодических, типовых, для утверждения типа и на соответствие утвержденному типу засчитывать испытания трансформаторов других типов, имеющих аналогичные конструктивные или технологические решения и одинаковые применяемые материалы, при наличии таких указаний в стандартах на трансформаторы конкретных типов.
8.3.6 Последовательность испытаний может быть произвольной, если иные требования не установлены в стандартах на трансформаторы конкретных типов.
8.3.7 При отрицательных результатах приемосдаточных, периодических и типовых испытаний после устранения дефектов повторные испытания проводят в полном объеме или, в технически обоснованных случаях, в сокращенном объеме повторяют испытания, по которым получены неудовлетворительные результаты, испытания, которые могли повлиять на возникновение дефектов, а также испытания, которые не проводились.
Если конкретные причины неудовлетворительного результата не установлены, повторные испытания по пунктам несоответствия проводят на удвоенном числе образцов.
Результаты повторных испытаний являются окончательными.
8.4 Квалификационные испытания

8.4.1 Порядок проведения квалификационных испытаний — по ГОСТ 15.001 и ГОСТ 15.309.
8.4.2 Допускается засчитывать в качестве квалификационных испытаний испытания опытных образцов, проведенные в соответствии с таблицей 12, если соблюдены следующие условия
опытные образцы были изготовлены по технологии и на оборудовании, предусмотренных для серийного производства;
при изготовлении установочной серии не проводилась доработка конструкции, требующая проведения испытаний;
время, прошедшее после испытаний опытных образцов, не превышает срок, установленный для периодических испытаний.
Если эти условия не соблюдены, то при соответствующем техническом обосновании допускается засчитывать испытания, на результатах которых несоблюдение указанных условий не отражается.
8.5 Приемосдаточные испытания проводит служба технического контроля либо другая, уполномоченная на это служба предприятия-изготовителя.
Одновременно с приемосдаточными испытаниями каждый трансформатор должен подвергаться первичной поверке по правилам, принятым в стране-изготовителе, и методике по ГОСТ 8.217.
8.6 Периодические испытания

8.6.1 Периодические испытания следует проводить на трансформаторах серийного производства не реже одного раза в 5 лет.
Подтверждение средней наработки до отказа первый раз проводят через 10 лет после начала серийного производства, затем — не реже одного раза в 5 лет.
8.6.2 Если производство трансформаторов было прервано ко времени наступления срока очередных периодических испытаний, то при возобновлении выпуска следует проводить периодические испытания трансформаторов на образцах первой партии, изготовленной после возобновления производства.
До завершения отдельных (длительных по времени) испытаний, входящих в объем периодических испытаний, основанием для выпуска трансформаторов является протокол предыдущих периодических испытаний.
8.7 Типовые испытания следует проводить в полном или сокращенном объеме квалификационных испытаний при изменении конструкции, применяемых материалов или технологии производства, если эти изменения могут оказать влияние на характеристики или параметры трансформаторов.
В зависимости от характера вносимого изменения (изменений) испытаниям допускается подвергать отдельные сборочные единицы, детали, образцы материалов и др.
8.8 Испытания для утверждения типа и на соответствие утвержденному типу следует проводить по правилам, принятым в стране-изготовителе.

9 МЕТОДЫ КОНТРОЛЯ
9.1 Проверка на соответствие требованиям сборочного чертежа

9.1.1 Проверке подлежат
габаритные1), установочные и присоединительные размеры, для которых на сборочном чертеже указаны предельные отклонения;
масса трансформатора1);
состояние поверхности наружных изоляционных частей;
состояние защитных покрытий наружных частей;
состояние площадок под заземляющие зажимы;
правильность заполнения табличек технических данных;
маркировка выводов;
комплектность.
________________
1) Кроме приемосдаточных испытаний.
Проверку проводят внешним осмотром, измерением универсальным измерительным инструментом, при помощи шаблонов, а также взвешиванием трансформатора на весах общего применения или при помощи пружинного динамометра.
9.1.2 При приемосдаточных испытаниях размеры допускается проверять на деталях и сборочных единицах до сборки трансформатора.
9.1.3 Допускается определять массу трансформатора суммированием масс его отдельных сборочных единиц.
9.2 Испытание изоляции

9.2.1 Изоляцию первичной обмотки испытывают
для трансформаторов на номинальное напряжение 0,66 кВ — по ГОСТ 2933;
для трансформаторов на номинальные напряжения от 3 до 500 кВ включительно — по ГОСТ 1516.1, ГОСТ 1516.2 и ГОСТ 1516.3;
для трансформаторов на номинальное напряжение 750 кВ — по ГОСТ 1516.2, ГОСТ 1516.3 и ГОСТ 20690.
Испытательные напряжения прикладывают между одним из выводов (или замкнутыми накоротко выводами) первичной обмотки и замкнутыми накоротко выводами вторичных обмоток, к которым должны быть присоединены заземляемые части трансформатора. Для трансформаторов, не имеющих собственной первичной обмотки, способ приложения напряжения следует указывать в стандартах на трансформаторы конкретных типов.
При отсутствии в конструкции трансформатора заземляемых элементов в стандартах на трансформаторы конкретных типов должны быть указаны металлические части, которые при испытаниях должны быть присоединены к замкнутым накоротко вторичным обмоткам.
Методы испытания изоляции маслонаполненных трансформаторов на номинальное напряжение 330 кВ и выше срезанным грозовым импульсом и многократными срезанными импульсами следует указывать в стандартах на трансформаторы конкретных типов.
9.2.2 Длину пути утечки внешней изоляции трансформаторов на соответствие требованиям 6.3.1 и 6.3.2 проверяют по ГОСТ 9920.
9.2.3 Междусекционную изоляцию испытывают по ГОСТ 1516.2.
Испытательное напряжение 3 кВ прикладывают поочередно между каждой секцией и соединенными между собой прочими секциями обмотки.
9.2.4 Изоляцию вторичных обмоток трансформаторов испытывают по ГОСТ 1516.2. Испытательное напряжение 3 кВ прикладывают поочередно между замкнутыми накоротко выводами каждой из вторичных обмоток и замкнутыми накоротко выводами прочих вторичных обмоток, к которым присоединяют заземляемые части трансформатора. При отсутствии в конструкции заземляемых частей следует руководствоваться указаниями 9.2.1.
9.2.5 Уровень частичных разрядов определяют по ГОСТ 1516.3 и ГОСТ 20074. Методы измерения тангенса угла диэлектрических потерь конденсаторной бумажно-масляной изоляции следует указывать в стандартах на трансформаторы конкретных типов.
9.2.6 Испытание междувитковой изоляции
9.2.6.1 При испытаниях междувитковой изоляции испытуемая вторичная обмотка должна быть разомкнута, а остальные вторичные обмотки (если они имеются) — замкнуты накоротко.
Через первичную обмотку трансформатора пропускают ток частотой 50 Гц, значение которого определяют в соответствии с требованиями 6.3.71).
Допускается проведение испытания при нескольких одновременно разомкнутых вторичных обмотках, если сравнительными испытаниями на одной и той же установке доказано, что индуктированное во вторичных обмотках напряжение (амплитуда) не уменьшается более чем на 20 % по сравнению с испытаниями, проводимыми при одной разомкнутой обмотке.
________________
1) Целью настоящего испытания является не воспроизведение условий работы трансформатора при разомкнутой вторичной цепи, а проверка качества междувитковой изоляции, поэтому форму волны тока и напряжения не нормируют.
9.2.6.2 Первичная обмотка шинных, втулочных, встроенных и разъемных трансформаторов может имитироваться несколькими витками, при этом за номинальный первичный ток принимают такое значение, при котором сохраняется значение номинальных ампервитков.
9.2.6.3 Индуктируемое во вторичной обмотке напряжение допускается определять
непосредственным измерением напряжения на выводах испытуемой вторичной обмотки;
для трансформаторов, имеющих собственную первичную обмотку, — измерением напряжения на выводах первичной обмотки и умножением измеренного значения напряжения на отношение чисел витков вторичной и первичной обмоток2);
для шинных, втулочных, встроенных и разъемных трансформаторов — измерением напряжения на выводах «контрольной» обмотки, наложенной временно поверх испытуемой обмотки, и умножением измеренного значения напряжения на отношение чисел витков вторичной и «контрольной» обмоток.
_______________________
2) При этом измерении пренебрегают падением напряжения на первичной обмотке.
9.2.6.4 Первичный ток (действующее значение) следует измерять с помощью трансформатора тока и амперметра классов точности не ниже 1.
9.2.6.5 Трансформатор считают выдержавшим испытание, если в процессе испытания междувитковой изоляции вторичных обмоток не произошло резкого увеличения первичного тока или уменьшения индуктируемого напряжения.
Напряжение, индуктируемое во вторичной обмотке (амплитудное значение), следует определять с погрешностью не более 10 % приборами, имеющими высокое входное сопротивление электронным вольтметром или электронно-лучевым осциллографом с делителем напряжения. Допускается использовать для измерения напряжения вольтметр, реагирующий на амплитудное значение напряжения, но градуируемый в действующих значениях синусоидальной кривой. В этом случае напряжение, показываемое прибором, должно быть умножено на .
Допускается вместо измерения тока ограничиваться контролем за его изменением в случае, когда определяющей величиной при испытании является амплитудное значение напряжения, и, аналогично, допускается вместо измерения напряжения ограничиваться контролем за его изменением в случае, когда определяющей величиной при испытании является первичный ток.
9.2.7 Испытания изоляции, проводимые в качестве критерия успешности других испытаний, проводят при значениях испытательных напряжений, равных 90 % нормированных значений, и времени воздействия 1 мин, вне зависимости от вида изоляции.
9.3 Измерение сопротивления изоляции обмоток проводят мегомметром на 2500 В для первичных обмоток и на 1000 В — для вторичных обмоток.
9.4 Определение пробивного напряжения и тангенса угла диэлектрических потерь при испытании пробы масла — по ГОСТ 6581.
Для трансформаторов с номинальным напряжением до 35 кВ включительно пробу масла отбирают в день испытания из емкости, из которой было залито масло в трансформатор, а для трансформаторов с номинальным напряжением 110 кВ и выше непосредственно из трансформатора. Порядок взятия пробы должен быть установлен в стандартах на трансформаторы конкретных типов. Методы определения влаго- и газосодержания, а также проведения хроматографического анализа содержащихся в масле газов должны быть указаны в стандартах на трансформаторы конкретных типов.
9.5 Определение погрешностей

9.5.1 Проверка полярности и определение токовых и угловых погрешностей
9.5.1.1 Проверку полярности и определение токовых и угловых погрешностей проводят на трансформаторах, подвергнутых размагничиванию. Методы размагничивания, проверка полярности и определение погрешностей — по ГОСТ 8.217.
Определение погрешностей проводят на каждой вторичной обмотке.
Если обмотке присвоено несколько классов точности и (или) несколько нагрузок, то при приемосдаточных испытаниях определение погрешностей проводят в высшем классе точности в условиях, оговоренных между изготовителем и потребителем, а при других видах испытаний — во всех классах точности и при всех нагрузках, установленных в стандарте на данный трансформатор.
9.5.1.2 При определении погрешностей вторичной обмотки каскадного трансформатора все остальные его вторичные обмотки должны быть замкнуты на нагрузки. Процентное отношение значений нагрузок к номинальным значениям должно соответствовать процентному отношению вторичной нагрузки (к номинальному значению) в испытуемой обмотке, если иные требования не предусмотрены в стандарте на трансформатор конкретного типа.
9.5.1.3 Погрешности шинных, втулочных, встроенных и разъемных трансформаторов при испытаниях квалификационных, типовых и на утверждение типа следует определять в первичном токоведущем контуре согласно рисунку 1a.

а) б)
1 — испытуемый трансформатор; Амакс — расстояние между осями проводников
соседних фаз в месте установки трансформатора в эксплуатации; — расстояние
в свету от трансформатора до места ближайшего изгиба проводника, служащего
в эксплуатации первичной обмоткой трансформатора
Рисунок 1
Численные значения размеров Амакс и Бмакс должны быть установлены в стандартах на трансформаторы конкретного типа и при испытании они не должны быть превышены.
9.5.1.4 Погрешности шинных, втулочных, встроенных и разъемных трансформаторов на номинальные токи свыше 2000 А при испытаниях приемосдаточных, периодических и на соответствие утвержденному типу допускается определять с первичной обмоткой, состоящей из нескольких витков, и при соответственно уменьшенном значении номинального тока (таким образом, чтобы значение номинальных ампервитков оставалось неизменным), если при квалификационных или типовых испытаниях установлено, что разница в значениях погрешностей, измеренных подобным образом и при условиях установки трансформатора согласно 9.5.1.3, не превышает 25 % нормируемых значений. Расположение витков первичной обмотки, выполняемой для испытания, равномерное вдоль магнитопровода или сосредоточенное на одной из его частей, должно быть указано в стандарте на трансформатор конкретного типа.
9.5.2 При необходимости проверки стабильности метрологических характеристик в качестве критерия успешности других испытаний, ее следует проводить непосредственным определением погрешностей или измерением тока намагничивания согласно 9.13. Значение допустимого изменения погрешностей или тока намагничивания должно быть установлено в стандарте на трансформатор конкретного типа.
9.5.3 При приемосдаточных испытаниях погрешности допускается измерять при меньшем числе значений токов и нагрузок, чем указано в 6.4 (таблицы 8 и 9), если это обосновано результатами квалификационных или типовых испытаний.
9.6 Проверка предельной кратности и коэффициента безопасности приборов

9.6.1 Проверку предельной кратности и коэффициента безопасности приборов следует проводить по схеме, приведенной на рисунке 2.

ТТО — образцовый трансформатор тока; ТТИ — испытуемый трансформатор тока;
ТТПИ — промежуточный трансформатор тока, находящийся в цепи испытуемого
трансформатора тока; ТТПО — промежуточный трансформатор тока, находящийся в
цепи образцового трансформатора тока; А1, А2 — амперметры; Z2 — вторичная нагрузка
в цепи испытуемого трансформатора тока
Рисунок 2
К элементам схемы предъявляют следующие требования
а) коэффициенты трансформации трансформаторов ТТПО и ТТПИ должны быть такими, чтобы выполнялось условие
nо nпо = nи nпи (3)
где nо — коэффициент трансформации ТТО;
nпо — коэффициент трансформации ТТПО;
nи — коэффициент трансформации ТТИ;
nпи — коэффициент трансформации ТТПИ.
Если образцовый трансформатор имеет коэффициент трансформации, при котором выполняется условие nо = nи nпи, то промежуточный трансформатор в его цепи может отсутствовать;
б) амперметры А1 и А2 должны измерять действующие значения тока.
Амперметр А2 должен иметь малое внутреннее сопротивление.
Класс точности амперметров должен быть не ниже 1.
Класс точности промежуточных трансформаторов должен быть не ниже 0,5.
Образцовый трансформатор должен иметь
класс точности не ниже 0,5 или полную погрешность не более 0,5 % при испытании вторичной обмотки класса 5Р;
класс точности не ниже 1 или полную погрешность не более 1 % при испытании вторичной обмотки класса 10Р;
в) значение нагрузки и ее коэффициент мощности должны быть выбраны так, чтобы полное сопротивление внешней вторичной цепи испытуемого трансформатора (включая сопротивление проводов и промежуточного трансформатора) и ее коэффициент мощности были равны заданным значениям (с точностью 5 %).
Через первичные обмотки ТТО и ТТИ пропускают ток частотой () Гц практически синусоидальной формы, значение которого соответствует предельной кратности или коэффициенту безопасности приборов. Значение первичного тока измеряют амперметром А1.
Полную погрешность e, %, определяют по формуле
(4)
где IA1 — ток по амперметру А1, А;
IA2 — ток по амперметру А2, А.
9.6.2 Если испытательная установка и (или) нормируемая термическая стойкость испытуемого трансформатора ограничивает длительность протекания требуемого тока, необходимую для успокоения амперметров, допускается определять ток другим способом, например осциллографированием.
Для трансформаторов с несколькими номинальными коэффициентами трансформации, получаемыми переключением секций обмоток при неизменном значении номинальных ампервитков, полную погрешность допускается измерять при любом коэффициенте трансформации.
9.6.3 Шинные, втулочные, встроенные и разъемные трансформаторы следует испытывать в испытательном контуре согласно рисунку 1a.
Численные значения размеров А и Б должны быть установлены в стандартах на трансформаторы конкретных типов и при проверке предельной кратности они не должны быть превышены, а при проверке коэффициента безопасности приборов должны быть не менее установленных значений.
9.6.4 Предельную кратность допускается проверять другим способом, который должен быть установлен в стандарте на трансформатор конкретного типа, если при испытаниях квалификационных, типовых, на утверждение типа или для проверки соответствия утвержденному типу доказано, что этот способ обеспечивает получение равнозначных результатов.
Коэффициент безопасности приборов допускается определять путем измерения тока намагничивания по 9.8.5.
9.7 Определение количественной утечки газа газонаполненных трансформаторов

9.7.1 Испытание по определению утечки проводят при температуре (25 ± 10) °С.
Испытуемый трансформатор, заполненный газом до номинального рабочего давления, помещают в замкнутый объем (камеру, чехол из полимерной пленки), который не должен превышать наружный объем испытуемого трансформатора более чем в 3 раза.
Внутрь объема помещают вентилятор, способствующий перемешиванию смеси воздуха и газа, заполняющего трансформатор.
После установки трансформатора в замкнутый объем, в последний вводят щуп чувствительного прибора (течеискателя), реагирующего на малые концентрации газа, которым заполнен испытуемый трансформатор, и фиксируют показания прибора. Через определенный промежуток времени выдержки трансформатора в замкнутом объеме (например через 1 ч) операцию повторяют.
9.7.2 Годовую утечку газа q, % массы газа в испытуемом трансформаторе, определяют по формуле
(5)
где DС— разность концентрации газа в замкнутом объеме за время выдержки, г/л;
р0 — давление газа, равное 1 кгс/см2;
DV— разность между замкнутым объемом и наружным объемом испытуемого трансформатора, л;
Рном — номинальное давление газа в трансформаторе (абсолютное), кгс/см2;
vгт — объем газа в трансформаторе, л;
d — плотность газа в трансформаторе;
t — время между измерениями, ч.
Для трансформатора, заполненного элегазом
(6)
Примечания
1 Значения объемов, необходимых для вычисления утечки, должны быть найдены с погрешностью, не превышающей 20 %.
2 Если шкала прибора для определения утечки не калибрована непосредственно для определения значения концентрации, г/л, эти значения находят по зависимости С = f(н), где н — показания прибора в единицах шкалы, приложенной к свидетельству об аттестации (калибровке), проводимой в установленном порядке.
9.8 Определение тока намагничивания вторичных обмоток

9.8.1 Для определения тока намагничивания к испытуемой вторичной обмотке при разомкнутой первичной обмотке прикладывают напряжение U частотой 50 Гц и измеряют протекающий по обмотке ток.
9.8.2 Значение напряжения U, В, соответствующее значению первичного тока, А, определяют по формуле
(7)
где I2ном — номинальный вторичный ток, А;
К — номинальный коэффициент безопасности обмотки для измерения или номинальная предельная кратность обмотки для защиты;
R2 — сопротивление вторичной обмотки постоянному току, приведенное к температуре, при которой определяют ток намагничивания, Ом;
Z2ном — номинальная вторичная нагрузка, Ом.
9.8.3 Напряжение U следует измерять вольтметром. Показания вольтметра необходимо умножить на коэффициент 1,11.
Допускается проводить измерение вольтметром, показания которого пропорциональны среднему значению напряжения, а шкала градуирована в действующих значениях синусоидальной кривой. Умножение показаний вольтметра на коэффициент 1,11 в этом случае не требуется. Основная погрешность вольтметра должна быть не более ± 1 %.
Измерение напряжения U проводят
а) непосредственно на выводах испытуемой вторичной обмотки;
б) для трансформаторов, имеющих собственную первичную обмотку, — на выводах первичной обмотки. При этом показания вольтметра должны быть умножены на коэффициент 1,11 и на отношение витков вторичной и первичной обмоток;
в) для шинных, втулочных, встроенных и разъемных трансформаторов, не имеющих собственной первичной обмотки, — на выводах специальной «контрольной» обмотки, намотанной на трансформатор на время испытаний. При этом показания вольтметра должны быть умножены на коэффициент 1,11 и на отношение витков вторичной и «контрольной» обмоток.
9.8.4 Действующее значение тока намагничивания следует измерять амперметром (миллиамперметром) класса точности не ниже 1.
9.8.5 Ток намагничивания вторичных обмоток I2нам (%K), % находят по формуле
(8)
где I2нам — ток намагничивания, А, измеренный по 9.8.1;
I2ном — номинальный вторичный ток, А;
К — KБном или Kном
I2нам(%К) — в соответствии с требованиями 6.5.
9.9 Испытание на нагрев при продолжительном режиме работы

9.9.1 Трансформаторы на номинальное напряжение 0,66 кВ испытывают по ГОСТ 2933, а на номинальные напряжения от 3 до 750 кВ включительно — по ГОСТ 8024 при наибольшем рабочем первичном токе.
Примечание — Допускается испытание трансформаторов на номинальное напряжение 0,66 кВ проводить по ГОСТ 8024.
9.9.2 Испытание проводят при нормальной температуре испытаний по ГОСТ 15150, если в стандартах на трансформаторы конкретных типов не предусмотрены иные условия.
9.9.3 При испытании трансформаторов, имеющих собственную первичную обмотку, ток к выводам первичной обмотки следует подводить проводами или шинами длиной не менее 1,5 м.
Трансформаторы, предназначенные для эксплуатации с конкретным типом шин, допускается испытывать без учета температуры проводников, подводящих ток к первичной обмотке. В этом случае проводники, подводящие ток при испытании, должны соответствовать условиям их эксплуатации.
9.9.4 Шинные, втулочные, встроенные и разъемные трансформаторы испытывают в первичном токоведущем контуре согласно рисунку 1a или 1б.
Необходимость испытаний в контуре, вид контура, а также размеры Амакс и Бмакс (которые при испытании не должны быть превышены), должны быть установлены в стандартах на трансформаторы конкретных типов.
9.9.5 Трансформаторы с несколькими коэффициентами трансформации, получаемыми переключением секций первичной обмотки, испытывают при наибольшем коэффициенте трансформации.
9.9.6 Вторичные обмотки трансформаторов при испытании должны быть замкнуты на номинальную нагрузку, на амперметр либо накоротко.
9.9.7 Значения превышения температур обмоток трансформаторов на частоту 60 Гц следует корректировать следующим образом
а) для трансформаторов до 1000 А или для трансформаторов без собственной первичной обмотки на любые номинальные токи
DТ60 = 1,05DТ50, (9)
где DТ60 — превышение температуры, соответствующее частоте 60 Гц;
DТ50 — превышение температуры, определенное опытным путем при частоте 50 Гц;
б) для трансформаторов с собственной первичной обмоткой на номинальные токи свыше 1000 А
DТ60 = 1,1DТ50 (10)
9.10 Испытание на стойкость к токам короткого замыкания

9.10.1 Испытание проводят при замкнутых накоротко вторичных обмотках и любом подходящем для опыта напряжении частотой () Гц пропусканием через первичную обмотку следующих токов
а) тока, наибольший пик которого должен быть (1,0 — 1,1)iд 1); начальное действующее значение периодической составляющей не должно превышать 1,15 . Время протекания тока — 3 — 10 полупериодов, число опытов — 3;
________________
1) При испытании шинных, втулочных, встроенных и разъемных трансформаторов значение наибольшего пика тока не устанавливают.
б) тока Iи, действующее значение которого в течение времени протекания tн должно быть таким, чтобы выполнялось соотношение
(11)
При этом значение tи должно быть от 0,5 до 5 с, число опытов — 1.
При наличии технических возможностей испытания по перечислениям а и б могут быть совмещены.
Перед испытанием температура трансформатора должна быть (25 ± 10) °С.
9.10.2 Испытание проводят в однофазном испытательном контуре. Размеры и конфигурация контура при испытании трансформаторов категорий размещения 2, 3, 4 и 5, а также расстояния от выводов первичной обмотки трансформатора до ближайших точек фиксации проводников контура должны соответствовать указанным в стандартах на трансформаторы конкретных типов.
Испытание шинных, втулочных, встроенных и разъемных трансформаторов допускается проводить при имитации их первичной обмотки несколькими первичными витками, располагаемыми равномерно относительно вторичных обмоток.
9.10.3 Трансформатор считают выдержавшим испытание, если
а) не произошло повреждений, препятствующих его дальнейшей работе;
б) после охлаждения до температуры (25 ± 10) °С он выдержал испытания по пунктам 2, 10, 12 таблицы 12;
в) погрешности вторичных обмоток, измеренные после размагничивания, соответствуют установленным классам точности и не изменились по сравнению с первоначальными более чем на половину значений, установленных для этих классов.
В стандартах на трансформаторы конкретных типов, у которых плотность односекундного тока термической стойкости превышает значения
а) у трансформаторов на частоту 50 Гц
160 А/мм2 — для медных проводников;
105 А/мм2 — для алюминиевых проводников;
б) у трансформаторов на частоту 60 Гц
154 А/мм2 — для медных проводников;
101 А/мм2 — для алюминиевых проводников
должны быть установлены дополнительные критерии, подтверждающие, что трансформатор выдержал испытания на стойкость к токам короткого замыкания.
9.11 Измерение сопротивления вторичных обмоток постоянному току проводят по ГОСТ 3484.1.
9.12 Испытание маслонаполненных трансформаторов на герметичность проводят по ГОСТ 3484.5.
9.13 Методы и виды испытаний трансформаторов на устойчивость к климатическим внешним воздействующим факторам по ГОСТ 16962.1 и механическим внешним воздействующим факторам по ГОСТ 16962.2 должны быть указаны в стандартах на трансформаторы конкретных типов в зависимости от исполнения и конструктивных особенностей трансформаторов.
Метрологические характеристики проверяют одним из следующих способов
а) путем непосредственного определения погрешностей по ГОСТ 8.217 при наибольшем и наименьшем рабочих значениях температуры с учетом длительного нагрева. При этом токовые и угловые погрешности не должны превышать значений, установленных в 6.4.2 для соответствующих классов точности;
б) путем измерения токов намагничивания согласно 9.8.5 при наибольшем и наименьшем рабочих значениях температуры с учетом длительного нагрева. При этом значение тока намагничивания должно соответствовать следующим условиям
(12)
(13)
где , — токи намагничивания при наибольшем и наименьшем рабочих значениях температуры, А;
I2ном — номинальный вторичный ток, А;
fдоп — предел допускаемой токовой погрешности, %;
dдоп — предел допускаемой угловой погрешности, срад.
При испытаниях трансформаторов категории размещения 1 на воздействие испытательных статических нагрузок основание трансформатора жестко закрепляют, а к середине вывода его первичной обмотки прикладывают испытательную нагрузку, равную значению, указанному в 6.2.3. Указанную нагрузку прикладывают поочередно в трех взаимно перпендикулярных направлениях в горизонтальной плоскости по оси вывода в сторону от трансформатора, в горизонтальной плоскости в направлении, перпендикулярном оси вывода, в вертикальной плоскости по направлению к основанию.
В каждом направлении время выдержки нагрузки — 1 мин.
Трансформатор считают выдержавшим испытание, если во время и после его проведения не отмечено повреждение трансформатора или вывода, течи масла у маслонаполненных и увеличение утечки газа у газонаполненных трансформаторов.
9.14 Испытание на прочность при транспортировании

9.14.1 Методы испытания на прочность при транспортировании по ГОСТ 23216 должны быть приведены в стандартах на трансформаторы конкретных типов.
9.14.2 После испытания трансформаторы распаковывают, проводят внешний осмотр трансформаторов, тары, креплений, а также проверяют параметры, установленные в стандартах на трансформаторы конкретных типов.
9.14.3 Трансформатор и его упаковку считают выдержавшими испытание, если
при внешнем осмотре упаковки не обнаружены механические повреждения тары, ведущие к потере защитных свойств, а также нарушения креплений упакованных изделий в таре.
Допускается ослабление креплений изделия в таре, если это не привело к повреждению трансформатора в процессе испытания;
при внешнем осмотре трансформатора не обнаружено повреждений, препятствующих его работе, и результаты проверки параметров положительные.
9.14.4 При упаковке нескольких трансформаторов в один ящик допускается проверку параметров проводить выборочно. Число подлежащих испытанию трансформаторов должно быть указано в стандартах на трансформаторы конкретных типов.
9.14.5 Для крупногабаритных трансформаторов испытание допускается не проводить, а способность трансформаторов и упаковки противостоять разрушающему действию механических нагрузок при транспортировании допускается оценивать на основании результатов транспортирования этих или аналогичных им изделий потребителю.
9.15 Испытание упаковки на сбрасывание

9.15.1 Методы испытания упаковки трансформаторов на сбрасывание по ГОСТ 18425 должны быть указаны в стандартах на трансформаторы конкретных типов.
9.15.2 Испытанию подвергают упаковку суммарной массой (вместе с упакованным изделием) до 200 кг. Упаковку суммарной массой более 200 кг, а также упаковку, маркированную знаком «Хрупкое. Осторожно» испытанию на прочность при сбрасывании не подвергают.
9.15.3 Ящик (упаковку) с находящимся в нем трансформатором (трансформаторами) или макетом, имитирующим упакованные трансформаторы, сбрасывают один раз на площадку по ГОСТ 18425 на его торцевую сторону с высоты
0,5 м — при суммарной массе трансформатора и упаковки до 100 кг включительно;
0,3 м — при суммарной массе трансформатора и упаковки от 100 до 200 кг включительно.
9.15.4 По окончании испытания проводят внешний осмотр упаковки.
9.15.5 Упаковку считают выдержавшей испытание, если при внешнем осмотре не обнаружено серьезных повреждений, ведущих к потере ее защитных свойств. Допускается ослабление отдельных креплений.
9.16 Подтверждение средней наработки до отказа проводят на основании сбора у потребителей и обработки информации о работе трансформаторов или их прототипов по методике, указанной в стандарте на трансформатор конкретного типа.
9.17 Методы испытания газонаполненных трансформаторов на взрывобезопасность следует указывать в стандартах на трансформаторы конкретных типов.

10 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

10.1 Транспортирование

10.1.1 Требования к транспортированию в части воздействия механических факторов по ГОСТ 23216 и климатических факторов внешней среды по ГОСТ 15150 должны быть указаны в стандартах на трансформаторы конкретных типов.
При транспортировании в транспортных контейнерах трансформаторы без индивидуальной упаковки должны быть надежно закреплены и предохранены от механических повреждений.
Допускается транспортирование трансформаторов в пределах одного города без упаковки при условии принятия необходимых мер, исключающих возможность их повреждения.
10.2 Хранение

10.2.1 Требования к хранению трансформаторов в части воздействия климатических факторов внешней среды по ГОСТ 15150 должны быть указаны в стандартах на трансформаторы конкретных типов.

11 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ
При вводе трансформаторов в эксплуатацию, а также в процессе эксплуатации трансформаторов следует соблюдать требования, установленные в стандартах на трансформаторы конкретных типов. Эти требования должны быть указаны в эксплуатационной документации.

12 ГАРАНТИИ ИЗГОТОВИТЕЛЯ
12.1 Изготовитель гарантирует соответствие трансформаторов требованиям настоящего стандарта при соблюдении условий применения, эксплуатации, хранения и транспортирования, установленных настоящим стандартом.
Гарантийный срок эксплуатации трансформаторов — три года с момента ввода в эксплуатацию, но не более трех с половиной лет со дня отгрузки с предприятия-изготовителя.
12.2 Для трансформаторов, предназначенных для экспорта, гарантийный срок эксплуатации устанавливают в соответствии с требованиями, принятыми в стране-изготовителе.

ПРИЛОЖЕНИЕ А
(обязательное)
Перечень справочных данных, приводимых в информационных
материалах предприятия-изготовителя

В информационных материалах предприятия-изготовителя следует указывать следующие справочные данные
а) допустимые вторичные нагрузки для различных классов точности, если такое требование предусмотрено в стандарте на трансформатор конкретного типа;
б) конструктивные данные номинальное число ампервитков, среднюю длину магнитного пути и сечение магнитопровода, сопротивление вторичной обмотки постоянному току, расчетное значение индуктивного сопротивления вторичных обмоток (без учета влияния внешних магнитных полей);
в) типовые кривые намагничивания магнитопроводов вторичных обмоток для защиты, снятые при практически синусоидальном напряжении (зависимость максимальной индукции от действующего значения напряженности магнитного поля);
г) кривые предельной кратности вторичных обмоток для защиты для кратностей, не превышающих тока динамической стойкости, деленного на 1,8× и для вторичных нагрузок — 25 % номинального значения (но не менее 10 В×А) и выше.
Для трансформаторов с несимметричным расположением первичной и вторичной обмоток диапазон нагрузок ниже номинальной может отличаться от указанного;
д) конструктивные особенности трансформаторов.
Примечание — Данные перечислений б — г приводят для трансформаторов на номинальные напряжения 6 кВ и выше (с указанием значений их возможных отклонений).

ПРИЛОЖЕНИЕ Б
(обязательное)
Допускаемая область погрешностей для трансформаторов
различных классов точности
Таблица Б.1

Класс
Погрешность

точности
токовая
угловая

0,1; 0,2; 0,5; 1

0,2S; 0,5S

3; 5; 10

Не нормируется

ГОСТ 10348-80
Группа Е
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР
КАБЕЛИ МОНТАЖНЫЕ МНОГОЖИЛЬНЫЕ С ПЛАСТМАССОВОЙ ИЗОЛЯЦИЕЙ.
ТЕХНИЧЕСКИЕ УСЛОВИЯ

Plastic-insulated multicore installation cables.
Specifications
Срок действия с 01.01.82
до 01.01.95

ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР
РАЗРАБОТЧИКИ
А. А. Михайлов (руководитель темы), Л.Д. Семова, Я.В.Драбкина
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 07.05.80 № 2039
3. ВЗАМЕН ГОСТ 10348-71
4. Срок проверки — 1995 г.
Периодичность — 5 лет
5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка
Номер пункта, подпункта

ГОСТ 20.57.406-81
4.1; 4.4.1-4.4.3; 4.5.1; 4.5.3; 4.5.3а; 4.5.5; 4.6.1

ГОСТ 2990-78
4.3.2

ГОСТ 3345-76
4.3.3

ГОСТ 5960-72
2.2.5

ГОСТ 7229-76
4.3.1

ГОСТ 12177-79
4.2.1

ГОСТ 15150-69
Вводная часть; 5.1

ГОСТ 18690-82
5.1

ГОСТ 21930-76
2.2.5

ГОСТ 22483-77
2.2.1; 2.3.1

ГОСТ 24234-80
2.2.5, 2.3.1

6. Срок действия продлен до 01.01.95 Постановлением Госстандарта СССР от 29.08.89 № 2664
7. Переиздание (сентябрь 1991 г.) с Изменениями № 1, 2, утвержденными в октябре 1986 г., августе 1989 г. (ИУС 1-87, 12-89)
Настоящий стандарт распространяется на монтажные многожильные кабели с поливинилхлоридной изоляцией и оболочкой, предназначенные для фиксированного межприборного монтажа электрических устройств, работающих при номинальном переменном напряжении до 500 В частоты до 400 Гц или постоянном напряжении до 750 В.
Вид климатического исполнения кабелей УХЛ и Т категории размещения 2-5 по ГОСТ 15150-69.
Настоящий стандарт устанавливает требования к кабелям, изготавливаемым для нужд народного хозяйства и экспорта.
(Измененная редакция, Изм. № 2).

1. МАРКИ И РАЗМЕРЫ
1.1. Марки и наименование кабелей должны соответствовать указанным в табл. 1.
Коды ОКП приведены в приложении 2.
Таблица 1

Марка кабеля
Наименование конструктивных элементов

МКШ
Кабель с изоляцией и оболочкой из поливинилхлоридного пластиката

МКЭШ
То же, экранированный

МКШМ
Кабель с изоляцией и оболочкой из поливинилхлоридного пластиката

1.2. Номинальное сечение, число жил, максимальный наружный диаметр кабелей должны соответствовать указанным в табл. 2.
Расчетная масса кабелей приведена в приложении 1.
Таблица 2

Число жил и номинальное
Максимальный наружный диаметр кабеля

сечение, мм2
МКШ, МКШМ
МКЭШ

2´0,35
6,7
7,5

3´0,35
6,9
7,7

5´0,35
8,2
9,0

7´0,35
8,8
9,6

10´0,35
11,6
12,4

14´0,35
12,4
13,2

2´0,5
7,0
7,8

3´0,5
7,2
8,0

5´0,5
8,5
9,5

7´0,5
9,2
10,0

10´0,5
12,2
13,0

14´0,5
13,1
13,9

2´0,75
7,5
8,3

3´0,75
7,7
8,5

5´0,75
9,2
10,0

7´0,75
10,0
10,8

10´0,75
13,2
14,0

14´0,75
14,2
15,0

1.1, 1.2. (Измененная редакция, Изм. № 1, 2).
1.3. Номинальная толщина изоляции 0,5 мм; минимальная — 0,4 мм. Плюсовый допуск не нормируется.
1.4. Номинальная толщина оболочки должна быть
для кабелей с числом жил 2, 3, 5 и 7, неэкранированных — 1,0 мм, экранированных — 1,2 мм;
для кабелей с числом жил 10 и 14, неэкранированных — 1,2 мм, экранированных — 1,4мм.
Предельное отклонение от номинальной толщины оболочки — минус 20%; плюсовый допуск не нормируется.
1.5. Строительная длина неэкранированного кабеля должна быть не менее 60 м, экранированного кабеля — не менее 25 м.
Допускается в партии не более 10% отрезков длиной не менее — 3 м.
Пример условного обозначения кабеля марки, МКЭШ, семижильного, с сечением каждой жилы 0,75 мм2
Кабель МКЭШ 7´0,75 ГОСТ 10348-80
То же, в тропическом исполнении
Кабель МКЭШ — Т 7´0,75 ГОСТ 10348-80

(Измененная редакция, Изм. № 2).

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1. Кабели должны изготовляться в соответствии с требованиями настоящего стандарта и технологической документацией, утвержденной в установленном порядке.
2.2. Требования к конструкции
2.2.1. Токопроводящая жила должна соответствовать классу 4 для сечений 0,35; 0,5 мм2 и классам 2 или 3 для сечения 0,75 мм2 по ГОСТ 22483-77. Жила кабеля марки МКШМ должна быть из медной проволоки, для остальных кабелей — из медной проволоки, луженой оловянно-свинцовым припоем.
(Измененная редакция, Изм. № 1, 2).

2.2.2. Токопроводящие жилы должны быть изолированы поливинилхлоридным пластикатом.
Изолированные жилы должны быть скручены в кабель. В каждом повиве должны быть две счетные жилы, отличающиеся цветом друг от друга и от остальных жил повива.
Поверх скрученных жил должна быть полиамидная или полиэтилентерефталатная пленка. Допускается местный разрыв пленки под оболочкой.
Допускается изготовление неэкранированного кабеля без применения пленки.
2.2.3. Поверх скрученных изолированных жил экранированного кабеля должен быть экран из медной проволоки диаметром не более 0,20 мм.
Коэффициент поверхностной плотности экрана должен быть не менее 65%.
2.2.4. Поверх скрученных изолированных и экранированных жил кабеля должна быть оболочка из поливинилхлоридного пластиката.
На поверхности оболочки не должно быть наплывов, шероховатостей и вмятин, выводящих наружный диаметр по оболочке за предельные отклонения.
2.2.5. Материалы, применяемые для изготовления кабелей, должны соответствовать
медная проволока — по нормативно-технической документации;
припой оловянно-свинцовый не ниже марок ПОС 61 ПОС 61М, ПОССУ 61-0,5-ГОСТ 21930-76;
полиэтилентерефталатная пленка — ГОСТ 24234-80;
пластикат поливинилхлоридный — марке И40-13А, И40-14 для изоляции и марке 040 для оболочки по ГОСТ 5960-72;
пластикат поливинилхлоридный — марке 040 (рецептуры 239, 239/1, 239 ГС, 288 ГС) для оболочки кабелей тропического исполнения по ГОСТ 5960-72;
медная луженая проволока, полиамидная пленка — нормативно-технической документации.
(Измененная редакция, Изм. № 1, 2).
2.3. Требования к электрическим параметрам
2.3.1. Электрическое сопротивление токопроводящих жил постоянному току должно соответствовать
а) при приемке и поставке — ГОСТ 22483-77;
б) на период эксплуатации и хранения допускается увеличение электрического сопротивления до 10% по сравнению со значениями при приемке и поставке.
2.3.2. Кабели должны выдерживать в течение 5 мин испытание переменным напряжением частоты 50 Гц
а) при приемке и поставке — 2000 В;
б) на период эксплуатации и хранения — 1000 В.
2.3.3. Электрическое сопротивление изоляции, пересчитанное на 1 км длины, должно быть не менее
а) при приемке и поставке при 20°С — 10 МОм,
при эксплуатации и хранении — 0,1 МОм;
б) при повышенной влажности воздуха при температуре 35°С — 1 МОм;
в) при температуре 70°С — 0,1 МОм.
(Измененная редакция, Изм. № 1).
2.4. Требования к стойкости при механических воздействиях
2.4.1. Кабели должны быть механически прочными при воздействии вибрационных нагрузок в диапазоне частот 1-5000 Гц с ускорением до 392 м/с2(40 g).
2.4.2. Кабели должны быть механически прочными при воздействии многократных ударов с ускорением 1471 м/с2(150 g) при длительности удара 1-3 мс.
2.4.3. Кабели должны быть механически прочными при воздействии одиночных ударов с ускорением 9810 м/с2(1000 g) и линейных нагрузок с ускорением до 4905 м/с2 (500 g).

2.5. Требования к стойкости при климатических воздействиях
2.5.1. Кабели должны быть стойкими к воздействию повышенной температуры 343 К (70°С), при этом за повышенную температуру принимают температуру наиболее нагреваемого элемента конструкции кабеля.
2.5.2. Кабели должны быть стойкими к воздействию пониженной температуры — 223 К (минус 50°С).
(Измененная редакция, Изм. № 1).

2.5.3. Кабели должны быть стойкими к воздействию относительной влажности воздуха до 98% при температуре 308 К (35°С).
2.5.3а. Кабели климатического исполнения Т должны быть стойкими к воздействию плесневых грибов.
(Введен дополнительно, Изм. № 2).
2.5.4. (Исключен, Изм. № 1).
2.6. Требования к надежности
2.6.1. Наработка кабелей в режимах и условиях, указанных в настоящем стандарте, должна быть 10000 ч.
2.6.2. Срок сохраняемости кабелей при хранении в отапливаемых хранилищах в упаковке изготовителя и вмонтированных в аппаратуру, а также в комплекте ЗИП должен быть не менее 15 лет, из них под навесом из этого срока (в составе аппаратуры и ЗИП) — не менее 5 лет.
2.6.3. Срок службы кабелей, в пределах которого обеспечивается наработка (п. 2.6.1) и сохраняемость (п. 2.6.2), должен быть 15 лет.
2.6.1-2.6.3. (Измененная редакция, Изм. № 1).

3. ПРАВИЛА ПРИЕМКИ
3.1. Для контроля соответствия кабелей требованиям настоящего стандарта устанавливаются приемо-сдаточные, периодические, типовые и испытания на надежность.
3.2. Приемо-сдаточные испытания
3.2.1. Приемо-сдаточным испытаниям должна быть подвергнута каждая партия кабелей.
За партию принимают кабели одной марки и одного сечения, одновременно предъявленные к приемке.
3.2.2. Испытания на соответствие требованиям пп. 1.5, 2.2.1, 2.2.2-2.2.4 и 2.3.2а должны проводиться изготовителем на каждой строительной длине кабеля. Испытания допускается проводить в процессе производства.
3.2.3. Испытания на соответствие пп. 1.2-1.4, 2.3.1a, 2.3.3а, 5.1, 5.2 должны проводиться изготовителем на 3% строительных длин кабелей от партии, но не менее чем на трех строительных длинах.
Испытания по пп. 1.2-1.5, 2.2.1-2.2.4, 2.3.1, 2.3.2 и 2.3.3 должны проводиться потребителем на 3% барабанов с кабелем или бухт от партии, но не менее чем на трех барабанах или бухтах.
При получении неудовлетворительных результатов при выборочном контроле хотя бы по одному из показателей по этому показателю должен быть проведен повторный контроль удвоенного числа строительных длин или барабанов с кабелем.
Результаты повторного испытания распространяются на всю партию.
(Измененная редакция, Изм. № 2).
3.3. Периодические испытания
3.3.1. Периодические испытания на соответствие требованиям пп. 2.5.2 и 2.5.3 должны проводиться один раз в полгода на 5 барабанах с кабелем или бухтах, отобранных методом случайного отбора от партии, выдержавшей приемо-сдаточные испытания, в период между периодическими испытаниями.
Испытания по этим пунктам проводят на одних и тех же 5 образцах, отобранных от разных барабанов или бухт.
3.3.2. При получении неудовлетворительных результатов периодических испытаний проводят повторные испытания на удвоенной выборке.
При получении неудовлетворительных результатов повторного испытания приемку кабелей прекращают.
После устранения причин дефектов и получения положительных результатов периодических испытаний, приемку кабелей возобновляют.
3.4. Типовые испытания
3.4.1. Типовые испытания кабелей на соответствие всем требованиям настоящего стандарта должны проводиться по программе, утвержденной в установленном порядке.
3.5. Испытания на надежность
3.5.1. Испытания по подтверждению наработки проводят прямым и косвенным способами.
При подтверждении наработки косвенным способом в качестве параметра, характеризующего уровень технологии, принимают испытательное напряжение.
Допустимое значение показателя уровня технологии устанавливают в технологической документации на изготовление кабелей.
Испытание по подтверждению наработки (п. 2.6.1) прямым способом проводят при типовых испытаниях и при отрицательных результатах испытаний косвенным способом.
3.5.2. Испытание на сохраняемость проводят методом длительного хранения на 24 образцах (по 12 образцов от партии первого и второго года производства).
3.5.1, 3.5.2. (Измененная редакция, Изм. № 1).
3.6. При оценке соответствия кабелей требованиям настоящего стандарта следует руководствоваться
при входном контроле (в течение 12 мес со времени приемки) — нормами при приемке и поставке;
в процессе эксплуатации и хранения — нормами на период эксплуатации и хранения.

4. МЕТОДЫ ИСПЫТАНИЙ

4.1. Все испытания кабелей должны проводиться в нормальных климатических условиях по ГОСТ 20.57.406-81, если не указаны другие условия испытания.
4.2. Проверка на соответствие требованиям к конструкции
4.2.1. Проверка на соответствие требованиям к конструкции (пп. 1.2-1.5, 2.2.1-2.2.4) должна производиться по ГОСТ 12177-79 и внешним осмотром без применения увеличительного прибора.
4.3. Проверка кабелей на соответствие требованиям к электрическим параметрам
4.3.1. Определение электрического сопротивления токопроводящих жил (п. 2.3.1) должно производиться по ГОСТ 7229-76.
4.3.2. Испытание напряжением (п. 2.3.2) должно проводиться — по ГОСТ 2990-78.
4.3.3. Определение электрического сопротивления изоляции кабелей (п. 2.3.3) должно производиться на строительных длинах по ГОСТ 3345-76.
4.4. Проверка стойкости при механических воздействиях
4.4.1. Испытание кабелей на вибропрочность (п. 2.4.1) должно проводиться по ГОСТ 20.57.406-81 (метод 103-1.1) без электрической нагрузки на образцах длиной 1,0-1,5 м каждый.
Образцы, свернутые в плоские бухты с внутренним диаметром равным 10 диаметрам кабеля, жестко крепят в горизонтальном положении к платформе вибрационного стенда.
После воздействия вибрации в течение 3 ч образцы кабеля должны выдержать испытание напряжением на соответствие требованиям п. 2.3.2а.
4.4.2. Испытание кабелей на воздействие многократных ударов (п. 2.4.2) должно проводиться по ГОСТ 20.57.406-81 (метод 104-1) без электрической нагрузки на образцах длиной 2,0-1,5мг каждый.
Образцы, свернутые в плоские бухты с внутренним диаметром равным 10 диаметрам кабеля, укрепляют на столе ударного стенда в горизонтальном положении. Испытания проводят при воздействии ударной нагрузки в направлении, перпендикулярном плоскости спиральной бухты.
После воздействия ударной нагрузки образцы кабеля должны выдержать испытание напряжением на соответствие требованиям п. 2.3.2а.
4.4.3. Испытание кабелей на воздействие одиночных ударов и линейных нагрузок (п. 2.4.3) должно проводиться по ГОСТ 20.57.406-81 (методы 106-1 и 107-1 соответственно). Испытания проводят без электрической нагрузки на образцах длиной 1,0-1,5 м каждый, свернутых в плоские бухты, с внутренним диаметром, равным 10 диаметрам кабеля.
После проведения испытаний образцы кабеля должны выдержать испытание напряжением на соответствие требованиям п. 2.3.2а.
4.5. Проверка стойкости при климатических воздействиях
4.5.1. Испытание на теплостойкость (п. 2.5.1) должно проводиться по ГОСТ 20.57.406-81 (метод 201-11) на образцах кабеля длиной не менее 1,0 м каждый, навитых на цилиндр диаметром равным 10 диаметрам кабеля.
После 96 ч выдержки при температуре (70±2)°C проводят измерение сопротивления изоляции.
Затем образцы извлекают из камеры тепла и выдерживают в нормальных климатических условиях не менее 1 ч, после чего сматывают с цилиндра.
Кабель считают выдержавшим испытание, если при повторном навивании на этот цилиндр в нормальных климатических условиях на его оболочке не будет трещин, видимых без применения увеличительного прибора, а сопротивление изоляции соответствует п. 2.3.3в.
(Измененная редакция, Изм. № 1).
4.5.2. Испытание на холодостойкость (п. 2.5.2) должно проводиться двумя способами последовательно на одних и тех же образцах кабеля длиной не менее 0,65 м каждый
а) образцы, навитые плотно, виток к витку, на цилиндр диаметром 150 мм, помещают в камеру холода при температуре 223±2 К (минус 50±2°С) на 3 ч.
После удаления из камеры холода образцы выдерживают в течение 30 мин при нормальных климатических условиях. При снятии образцов с цилиндра и повторном навивании на этот же цилиндр на их поверхности не должно быть трещин, видимых без применения увеличительного прибора;
б) после пребывания в течение 2 ч в распрямленном состоянии в камере холода при температуре 253±2 К (минус 20±2°С) образцы кабеля подвергают при этой же температуре испытанию на изгиб под углом 180° вокруг цилиндра диаметром, равным 10 диаметрам кабеля.
После этого испытания на поверхности оболочки не должно быть трещин, видимых без применения увеличительного прибора.
4.5.3. Испытание на влагостойкость (п. 2.5.3) должно проводиться по ГОСТ 20.57.406-81 (метод 208-2) на образцах кабеля длиной не менее 1,0 м каждый. Концы кабелей должны быть защищены от проникновения влаги внутрь образцов.
Образцы после пребывания в камере при относительной влажности 95-98% и температуре 313±2 К (40±2°С) в течение 48 ч извлекают и выдерживают в нормальных климатических условиях не менее 1 ч.
Затем образцы испытывают на соответствие требованию п. 2.3.3в.
4.5.3а. Испытанию на воздействие плесневых грибов (п. 2.5.3а) подвергают образцы материала оболочки кабелей по ГОСТ 20.57.406-81 (метод 214-1). Степень обрастания — не более 3 баллов.
(Введен дополнительно, Изм. № 2).
4.5.4. (Исключен, Изм. № 1).
4.6. Проверка на соответствие требованиям к надежности
4.6.1. Испытание по подтверждению наработки кабелей (п. 2.6.1) должно проводиться на 10 образцах кабеля.
Образцы длиной 1,0-1,5 м каждый свертывают в бухты с внутренним диаметром, равным 10 диаметрам кабеля.
Образцы помещают в камеру тепла и в течение 500 ч выдерживают при температуре 343±2 К (70±2°С) при условиях, указанных в ГОСТ 20.57.406-81 (метод 201-1.1).
После выдержки в нормальных климатических условиях в течение 3 ч образцы осматривают без применения увеличительного прибора и испытывают напряжением на соответствие требованию п. 2.3.2б.
Провода считают выдержавшими испытание, если на поверхности образцов не обнаружено трещин и образцы выдерживают испытание напряжением, указанным в п. 2.3.2б.
(Измененная редакция, Изм. № 1).
4.6.2. При испытании на сохраняемость (п. 2.6.2) образцы кабелей длиной не менее 5 м закладывают на хранение в складские помещения.
Перед закладкой на хранение проверяют внешний вид кабелей без применения увеличительного прибора и соответствие их требованиям пп. 2.3.2а и 2.3.3а.
В процессе хранения периодически один раз в два года проверяют внешний вид кабелей и соответствие их требованиям пп. 2.3.2б и 2.3.3б.
Кабели считают выдержавшими испытание, если при периодических испытаниях и по истечении срока сохраняемости на поверхности образцов не обнаружены трещины, а электрические параметры соответствуют требованиям пп. 2.3.2б и 2.3.3б.
(Измененная редакция, Изм. № 1, 2).
4.6.3. Качество и правильность маркировки и упаковки (пп. 5.1, 5.2) проверяют внешним осмотром.
(Введен дополнительно, Изм. № 2).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Упаковка, маркировка, транспортирование и хранение кабелей должны производиться по ГОСТ 18690-82.
Кабели должны быть намотаны на деревянные барабаны или в бухты.
Диаметр шейки барабана или внутренний диаметр бухты должен быть не менее 100 мм.
Длина нижнего конца кабеля на барабане, выведенного для испытаний, должна быть не менее 0,1 м.
Условия транспортирования и хранения кабелей в части воздействия климатических факторов внешней среды должны соответствовать условиям ОЖ-4 по ГОСТ 15150-69.
(Измененная редакция, Изм. № 2).

5.2. На каждом барабане или на ярлыке, прикрепленном к бухте, должны быть указаны
товарный знак предприятия-изготовителя;
марка кабеля;
число жил;
номинальное сечение в квадратных миллиметрах;
длина в метрах (число отрезков и их длина);
дата изготовления (месяц, год);
обозначение настоящего стандарта.

6. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

6.1. Кабели предназначены для эксплуатации при температуре окружающей среды от 223 до 323 К (от минус 50 до плюс 50°С).
6.2. Монтаж кабелей без предварительного нагрева должен производиться при температуре не ниже 258 К (минус 15°С).

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ
7.1. Изготовитель гарантирует соответствие кабелей требованиям настоящего стандарта при соблюдении условий эксплуатации, хранения и транспортирования.
7.2. Гарантийный срок эксплуатации кабелей — 6 лет с момента ввода в эксплуатацию.

ПРИЛОЖЕНИЕ 1
Справочное
РАСЧЕТНАЯ МАССА КАБЕЛЕЙ

Число жил номинальное
Расчетная масса 1 км кабеля, кг

сечение, мм2
МКШ, MKШM
МКЭШ

2´0,35
37
61

3´0,35
40
64

5´0,35
57
97

7´0,35
73
113

10´0,35
108
158

14´0,35
137
190

2´0,5
44
68

3´0,5
48
73

5´0,5
70
110

7´0,5
90
132

10´0,5
133
180

14´0,5
171
219

2´0,75
55
80

3´0,75
60
86

5´0,75
88
130

7´0,75
115
160

10´0,75
170
227

14´0,75
220
280

(Измененная редакция, Изм. № 1, 2).

ПРИЛОЖЕНИЕ 2
Обязательное
Коды ОКП и контрольные числа монтажных кабелей

Марка
Коды ОКП
Контрольное число

МКШ
35 4833 0100
10

МКЭШ
35 4833 0200
07

МКШМ
35 4833 0600
06

МКШ-Т
35 4833 1600
02

МКЭШ-Т
35 4833 1700
10

(Введено дополнительно, Изм. № 2).

ГОСТ Р 51330.12-99
(МЭК 60079-13-82)
Группа Е02
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЭЛЕКТРООБОРУДОВАНИЕ ВЗРЫВОЗАЩИЩЕННОЕ
Часть 13
Проектирование и эксплуатация помещений, защищенных избыточным давлением
Electrical apparatus for explosive gas atmospheres.
Part 13. Construction and use of rooms
or buildings protected by pressurization
ОКС 29.260.20
ОКСТУ 3402
Дата введения 2001-01-01
Предисловие
1 РАЗРАБОТАН Некоммерческой автономной научно-исследовательской организацией “Центр по сертификации взрывозащищенного и рудничного электрооборудования ИГД” (НАНИО ”ЦС ВЭ ИГД”)
ВНЕСЕН Техническим комитетом по стандартизации ТК 403 ”Взрывозащищенное и рудничное электрооборудование”
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 9 декабря 1999 г. N 501-ст
3 Настоящий стандарт, за исключением подразделов 6.3.1, 6.4, раздела 9, представляет собой аутентичный текст технического отчета МЭК 60079-13-82 ”Электрооборудование взрывозащищенное. Часть 13. Проектирование и эксплуатация помещений или зданий, защищенных избыточным давлением”
4 ВВЕДЕН ВПЕРВЫЕ

ВВЕДЕНИЕ
Настоящий стандарт входит в комплекс государственных стандартов на взрывозащищенное электрооборудование, разработанных на основе применения международных стандартов МЭК на взрывозащищенное электрооборудование.
Стандарт устанавливает требования к оснащению и эксплуатации помещений, защищенных избыточным давлением, и связанных с ними частей, таких как воздуховоды (газопроводы) защитного газа, вспомогательные контрольные устройства, необходимые для обеспечения удовлетворительной работы системы продувки под давлением и поддержания избыточного давления в помещении.
В стандарте приведены требования к проверкам, необходимым для подтверждения соответствия помещений требованиям настоящего стандарта.
Дополнительные требования, отсутствующие в техническом отчете МЭК 60079-13-82 и отражающие потребности экономики страны, в тексте стандарта выделены курсивом.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий стандарт устанавливает требования к помещениям, защищенным избыточным давлением, оснащению и эксплуатации помещений и связанных с ними частей, таких как воздуховоды (газопроводы), вспомогательные контрольные устройства, необходимые для обеспечения удовлетворительной работы системы продувки под давлением и поддержания избыточного давления.
Стандарт устанавливает условия эксплуатации электрооборудования, находящегося в указанном помещении, способного вызвать воспламенение взрывоопасных газовых смесей.
В стандарте установлены требования к проверкам помещений, необходимым для подтверждения соответствия помещений требованиям настоящего стандарта.
Стандарт распространяется только на помещения, внутри которых нет источников (в том числе потенциальных) горючих газов или паров, которые могут образовать взрывоопасные смеси.
Требования настоящего стандарта являются обязательными.

2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ Р 51330.5-99 (МЭК 60079-4-75) Электрооборудование взрывозащищенное. Часть 4. Метод определения температуры самовоспламенения
ГОСТ Р 51330.9-99 (МЭК 60079-10-95) Электрооборудование взрывозащищенное. Часть 10. Классификация взрывоопасных зон
ГОСТ Р 51330.11-99 (МЭК 60079-12-99) Электрооборудование взрывозащищенное. Часть 12. Классификация смесей газов и паров с воздухом по безопасным экспериментальным максимальным зазорам и минимальным воспламеняющим токам

3 ОПРЕДЕЛЕНИЯ
В настоящем стандарте применяют следующие термины с соответствующими определениями.
3.1 помещение Пространство, огражденное со всех сторон стенами (в т.ч. с окнами и дверями), с покрытием (перекрытием) и полом, снабженное кабельными проходами, трубопроводами, воздуховодами (газопроводами), оснащенное электрооборудованием.
Примечание — В настоящем стандарте термин «помещение» относится также к зданиям, комнатам, залам для размещения оборудования.
3.2 отверстие Любое отверстие, дверь, окно или воздухопроницаемая стационарная панель.
3.3 защитный газ (воздух) Газ, применяемый для поддержания избыточного давления внутри помещения или для его продувки.
3.4 продувка под избыточным давлением Вид защиты, при помощи которой предотвращается попадание взрывоопасных газов и паров в помещение за счет поддержания в нем защитного газа при более высоком давлении, чем давление окружающей среды.
3.5 помещение, защищенное избыточным давлением Помещение, в котором давление защитного газа выше, чем давление окружающей среды.
3.6 продувка под избыточным давлением с компенсацией утечки Вид защиты, при которой подача защитного газа достаточна для поддержания избыточного давления в негерметичном помещении. Подача газа компенсирует неизбежные утечки из помещения и связанных с ним воздуховодов, причем все отверстия на выходе закрыты.
3.7 продувка под избыточным давлением с непрерывным потоком защитного газа Вид защиты, при помощи которой в помещении и связанных с ним воздуховодах поддерживается избыточное внутреннее давление. Непрерывный и принудительный поток защитного газа проходит через эти воздуховоды, через отверстия контролируемого помещения.
3.8 предварительная продувка Процесс прохождения определенного количества защитного газа через помещение и связанные с ним воздуховоды для уменьшения концентрации взрывоопасного газа или пара до значения менее 25% нижнего концентрационного предела распространения пламени (НКПР).

4 КЛАССИФИКАЦИЯ ВЗРЫВООПАСНЫХ ЗОН ПОМЕЩЕНИЙ
Классификацию взрывоопасных зон, в которых могут располагаться помещения, следует проводить по ГОСТ Р 51330.9.
Помещение, продуваемое под избыточным давлением, при отсутствии продувки имеет тот же класс взрывоопасной зоны, в которой оно находится и в которую имеет выход.
Помещение под избыточным давлением после предварительной продувки должно допускать применение электрооборудования, которое не имеет какую-либо другую защиту, установленную для взрывоопасной зоны соответствующего класса, в которой расположено защищаемое помещение.
Примечание — Воздушную среду внутри помещения, которое частично расположено во взрывоопасной зоне, но все отверстия которого ведут во взрывобезопасные зоны, считают взрывобезопасной.

5 ТРЕБОВАНИЯ К ВОЗДУХОВОДАМ И КАНАЛАМ ДЛЯ ЭЛЕКТРИЧЕСКИХ КОММУНИКАЦИЙ
5.1 Воздуховоды для защитного газа и их соединения
Воздуховоды для защитного газа и их соединения должны быть механически прочными, стойкими к агрессивной окружающей среде и способными без остаточной деформации выдерживать полуторакратное рабочее избыточное давление защитного газа, но не менее 200 Па. Если при работе возникают избыточные давления, которые способны вызывать опасную деформацию воздуховодов или соединений, то необходимо устанавливать предохранительные устройства.
Расположение, размеры и число воздуховодов от источника защитного газа должны быть достаточными, чтобы обеспечить эффективную продувку. Число воздуховодов следует выбирать в зависимости от конструкции и расположения защищаемой аппаратуры.
Воздуховоды для защитного газа следует рассматривать как составную часть помещения. Там, где воздуховоды проходят через взрывоопасные зоны, в них должно поддерживаться избыточное давление по отношению к окружающей среде.
5.2 Каналы для электрических коммуникаций
Ввод кабелей, электропроводок в трубах и других устройств (для защитного газа, воды и т.д.) непосредственно в помещение следует осуществлять таким образом, чтобы в помещении поддерживалось необходимое избыточное давление и предотвращалось проникновение в него взрывоопасных газов и паров.
5.3 В местах, где выходные отверстия открываются во взрывоопасную зону, следует оснащать их закрывающимися клапанами или заглушками для того, чтобы предотвратить попадание снаружи взрывоопасных газов и паров при повреждении системы продувки под давлением.

6 ЗАЩИТНЫЕ МЕРЫ
Защитные меры должны предотвращать опасность возникновения взрыва от электрооборудования, устанавливаемого в продуваемом помещении, в момент его включения или в случае повреждения системы продувки под избыточным давлением. Эти меры следует принимать исходя из характеристик электрооборудования, условий окружающей среды, наличия средств обеспечения безопасности внутри помещения или применения автоматического отключения источников питания.
Должны приниматься следующие меры.
6.1 При включении или после отключения электрооборудования при любом классе взрывоопасной зоны необходимо перед подачей напряжения на любое электрооборудование, размещенное в помещении и не защищенное каким-либо видом защиты, пригодным для зоны соответствующего класса
1) произвести предварительную продувку достаточной продолжительности, чтобы внутреннее пространство помещения можно было рассматривать как взрывобезопасную зону (см. примечания);
2) продуть помещение под избыточным давлением.
Примечания
1 Пространство в помещении считают взрывобезопасной зоной, если во всех точках в помещении и связанных с ними воздуховодах концентрация взрывоопасных газов или паров ниже 25% НКПР. Место измерения следует выбирать там, где присутствует самая высокая концентрация взрывоопасного газа.
2 Объем защитного газа, требуемый для предварительной продувки, определяют как пятикратный внутренний объем помещения и его присоединенных воздуховодов.
6.2 Защитные меры при повреждении системы продувки под давлением
6.2.1 Помещение во взрывоопасной зоне класса 1
Зону в помещении (считают взрывобезопасной, когда помещение продувается) следует классифицировать как взрывоопасную зону класса 1 при отсутствии продувки под давлением в соответствии с требованиями раздела 4 (исключительный случай).
6.2.1.1 Если электрооборудование, установленное в помещении, не соответствует взрывоопасной зоне класса 1, то следует предусматривать одновременное действие следующих мер
— подача сигнала (светового или звукового, или обоих), извещающего об отсутствии продувки под давлением;
— осуществление действий для восстановления системы продувки под давлением;
— автоматическое отключение источников питания с выдержкой времени, нормированной по условиям обеспечения безопасности.
При установлении выдержки времени при автоматическом отключении источников питания необходимо предусмотреть меры предосторожности, исключающие попадание в помещение опасных газовых смесей и возможное влияние конвекции и диффузии газов. Нормируемую выдержку времени при автоматическом отключении электрооборудования можно увеличить при условии подтверждения, что за пределами помещения находится взрывобезопасная зона.
6.2.1.2 Если электрооборудование в помещении соответствует взрывоопасной зоне класса 2, то следует предусматривать одновременное соблюдение следующих мер
— подача сигнала (светового или звукового, или обоих), извещающего об отсутствии продувки под давлением;
— осуществление действий для восстановления системы продувки под давлением;
— отключение источников питания с выдержкой времени, нормированной по условиям обеспечения безопасности, если систему продувки под давлением невозможно восстановить или если концентрация взрывоопасного газа в помещении повышается до взрывоопасного уровня.
6.2.2 Помещение во взрывоопасной зоне класса 2
Зону в помещении классифицируют как взрывоопасную зону класса 2 при отсутствии продувки под давлением в соответствии с требованиями раздела 4 (наиболее частый случай).
Если электрооборудование, установленное в помещении, по условиям применения не соответствует взрывоопасной зоне класса 2, то следует предусматривать одновременное соблюдение следующих мер
— подача сигнала (светового или звукового, или обоих), извещающего об отсутствии продувки под давлением;
— осуществление действий для восстановления системы продувки под давлением;
— отключение источников питания с выдержкой времени, нормированной по условиям обеспечения безопасности, если систему продувки под давлением невозможно восстановить или если концентрация взрывоопасного газа в помещении повышается до взрывоопасного уровня.
Перечень защитных мер, принимаемых в случае повреждения системы продувки под давлением, изложенных в настоящем разделе, приведен в таблице 1.
Таблица 1 — Перечень защитных мер, принимаемых в случае повреждения системы продувки под давлением

Установленное электрооборудование

Класс взрывоопасной зоны помещения*
соответствует взрывоопасной зоне класса 1
соответствует взрывоопасной зоне, зоне класса 2
общего назначения

1
Не требуется никаких действий
Подача сигнала (светового или звукового, или обоих)
Подача сигнала (светового или звукового, или обоих)

Осуществление действий для восстановления системы продувки
Осуществление действий для восстановления системы продувки

Отключение источников питания с выдержкой времени, нормированной по условиям обеспечения безопасности, если систему продувки невозможно восстановить или если концентрация взрывоопасного газа повышается до взрывоопасного уровня
Автоматическое отключение источников питания с выдержкой времени, нормированной по условиям обеспечения безопасности

2
Не требуется никаких действий
Не требуется никаких действий
Подача сигнала (светового или звукового, или обоих)

Осуществление действий для восстановления системы продувки

Отключение источников питания с выдержкой времени, нормированной по условиям обеспечения безопасности, если систему продувки невозможно восстановить или если концентрация взрывоопасного газа повышается до взрывоопасного уровня

_____________ * Классификация в случае отсутствия продувки.

6.3 Другие защитные меры
Необходимо предусматривать следующие дополнительные меры.
6.3.1 Электрооборудование, которое остается под напряжением при отсутствии продувки (электрооборудование, обеспечивающее продувку, электрические светильники, аппаратура контроля и связи и др.), должно быть взрывозащищенным и соответствовать классу взрывоопасной зоны помещения (раздел 4).
Примечание — Осветительные и телекоммуникационные устройства в помещении могут оставаться в рабочем состоянии.
6.3.2 Источники светового или звукового сигналов должны располагаться так, чтобы в случае повреждения системы продувки обеспечить возможность быстрого принятия ответственным лицом необходимых оперативных действий.
6.3.3 Для контроля работы системы продувки следует применять устройства контроля давления или контроля потока, или же оба устройства.
6.3.4 В случаях, когда необходимо обеспечить непрерывную работу электрооборудования в рабочем режиме, может быть предусмотрена установка двух источников подачи защитного газа для того, чтобы при выходе из строя одного источника можно было переключиться на другой. Каждый источник должен самостоятельно поддерживать в помещении необходимое избыточное давление.
6.4 В части общих требований противопожарной защиты помещений на всех этапах их создания и эксплуатации следует руководствоваться системой нормативных документов в строительстве.

7 ИЗБЫТОЧНОЕ ДАВЛЕНИЕ И РАСХОД ЗАЩИТНОГО ГАЗА
7.1 Система подачи защитного газа должна обеспечивать необходимые значения избыточного давления и расхода, компенсирующего утечки защитного газа через все отверстия помещения, в том числе при условии их одновременного открытия. При этом избыточное давление и расход защитного газа не должны быть чрезмерно большими и должны позволять открывать и закрывать двери.
7.2 Необходимо поддерживать минимальное избыточное давление 25 Па по отношению к наружной среде во всех точках, в которых возможны утечки внутри помещения и связанных с ним проходах; при этом все двери и окна должны быть закрыты.
7.3 Если внутри продуваемого помещения установлено оборудование, потребляющее воздух, то потребление воздуха этим оборудованием должно обеспечиваться потоком воздуха через систему продувки. Если это условие не выполняется, то поток дополнительного воздуха следует подавать по отдельной системе.
Примечания
1 Система продувки под давлением может также содержать нагревательные, вентиляционные устройства, а также устройства кондиционирования воздуха в дополнение к оборудованию, необходимому для выполнения приведенных выше требований.
2 В проекте продуваемого помещения указывают число лиц, которые должны находиться в помещении для обслуживания оборудования, тип установленного в помещении оборудования и его потребность в охлаждающем воздухе, если таковая имеется.

8 ЗАЩИТНЫЙ ГАЗ
Защитный газ не должен содержать химических продуктов или примесей, которые могут оказывать неблагоприятные влияния или способствовать снижению безопасности.
Примечание — Защитный газ можно также применять для других целей, например для охлаждения оборудования.

9 ПРОВЕРКА ПОМЕЩЕНИЯ ПЕРЕД ВВОДОМ В ЭКСПЛУАТАЦИЮ
Перед вводом в эксплуатацию помещения необходимо провести его проверку в следующем объеме
— осмотр и проверка соответствия помещения технической документации и требованиям стандарта;
— проверка параметров защитного газа;
— определение минимального давления защитного газа и проверка минимального времени предпусковой продувки;
— проверка работы аппаратуры контроля, блокировок, сигнализации и отключения;
— проверка чистоты защитного газа.

10 ПРЕДУПРЕДИТЕЛЬНЫЕ НАДПИСИ И ИНФОРМАЦИОННЫЕ СВЕДЕНИЯ
10.1 На дверях, ведущих в помещение, защищенное избыточным давлением, снаружи наносят следующую надпись ”Внимание! Помещение, защищенное избыточным давлением. Закрывать дверь”.
10.2 Внутри помещения (при выходе) должны быть таблички, содержащие следующие информационные сведения минимальное требуемое избыточное давление и расход защитного газа, категория взрывоопасности по ГОСТ Р 51330.11 и группа взрывоопасной смеси по ГОСТ Р 51330.5, находящейся внутри помещения при отсутствии продувки (например, IIAT3).
10.3 Внутри помещения, в хорошо видимом месте, должна быть нанесена надпись с указанием строительной организации, соорудившей помещение, и предприятия, ответственного за его эксплуатацию.
10.4 Внутри помещения должны быть плакаты, содержащие правила, которые необходимо соблюдать при эксплуатации электрооборудования.
а) При включении
В соответствии с требованиями 6.1 вблизи от коммутационного аппарата вентилятора системы продувки под давлением и рядом с главным автоматическим выключателем помещения должна быть следующая или эквивалентная ей надпись ”Внимание! Вентилятор системы продувки под давлением должен работать в течение ___ мин перед включением электрооборудования”.
Примечание — Указывается время, требуемое для продувки при минимальной скорости потока защитного газа.
б) В случае повреждения системы продувки под давлением
В соответствии с требованиями 6.2 должны быть представлены на плакатах детальные сведения об электрооборудовании, которое следует отключать, о нормированном времени автоматического отключения, допускаемом для каждой операции, и любые другие меры, которые необходимо предпринимать в случае повреждения системы продувки под давлением. Указанные сведения должны располагаться в непосредственной близости от отключаемого электрооборудования.

ГОСТ Р 51137-98
УДК 621.313.333 006.354 Е61
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЭЛЕКТРОПРИВОДЫ РЕГУЛИРУЕМЫЕ АСИНХРОННЫЕ
ДЛЯ ОБЪЕКТОВ ЭНЕРГЕТИКИ

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ
Asynchronous controlled variable electric drives for energetics objects.
General specifications
ОКС 29.160.20
ОКСТУ 3300
Дата введения 1998—07—01
Предисловие
1 ПОДГОТОВЛЕН И ВНЕСЕН АО ВНИИЭ
2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 19 февраля 1998 г. № 19
3 ВВЕДЕН ВПЕРВЫЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий стандарт распространяется на регулируемые асинхронные электроприводы (далее — электроприводы), предназначенные для работы на объектах энергетики (тепловых электростанциях и насосных станциях централизованного снабжения).
Вид климатического исполнения по ГОСТ 15150 из числа указанных в ГОСТ 15543.1 устанавливают в технических условиях (далее — ТУ) на электроприводы конкретных типов.

2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ 2.114—95 ЕСКД. Технические условия
ГОСТ 2.601—95 ЕСКД. Эксплуатационные документы
ГОСТ 8.513—84 ГСИ. Поверка средств измерений. Организация и порядок проведения
ГОСТ 9.005—72 ЕСЗКС. Металлы, сплавы, металлические и неметаллические неорганические покрытия. Допустимые и недопустимые контакты с металлами и неметаллами
ГОСТ 12.1.003—83 ССБТ. Шум. Общие требования безопасности
ГОСТ 12.1.004—91 ССБТ. Пожарная безопасность. Общие требования
ГОСТ 12.2.007.0—75 ССБТ. Изделия электротехнические. Общие требования безопасности
ГОСТ 12.2.007.1—75 ССБТ. Машины электрические вращающиеся. Требования безопасности
ГОСТ 12.2.007.11—75 ССБТ. Преобразователи электроэнергии полупроводниковые. Требования безопасности
ГОСТ 12.3.019—80 ССБТ. Испытания и измерения электрические. Общие требования безопасности
ГОСТ 20.39.312—85 Комплексная система общих технических требований. Изделия электротехнические. Требования по надежности
ГОСТ 183—74 Машины электрические вращающиеся. Общие технические требования
ГОСТ 7217—87 Машины электрические вращающиеся. Двигатели асинхронные. Методы испытаний
ГОСТ 8865—93 Изделия электротехнические. Классы нагревостойкости электрической изоляции
ГОСТ 10434—82 Соединения контактные электрические. Классификация. Общие технические требования
ГОСТ 10683—73 Машины электрические. Номинальные частоты вращения и допускаемые отклонения
ГОСТ 11828—86 Машины электрические вращающиеся. Общие методы испытаний
ГОСТ 12139—84 Машины электрические вращающиеся. Ряды номинальных мощностей, напряжений и частот
ГОСТ 13109—87 Нормы качества электрической энергии у ее приемников, присоединенных к электрическим сетям общего назначения
ГОСТ 14192—96 Маркировка грузов
ГОСТ 14254—96 Степени защиты, обеспечиваемые оболочками (код IP)
ГОСТ 15150—69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15543.1—89 Изделия электротехнические. Общие требования в части стойкости к климатическим внешним воздействующим факторам
ГОСТ 16842—82 Радиопомехи индустриальные. Методы испытаний источников индустриальных радиопомех
ГОСТ 16962.1—89 Изделия электротехнические. Методы испытаний на устойчивость к климатическим внешним воздействующим факторам
ГОСТ 16962.2—90 Изделия электротехнические. Методы испытаний на стойкость к механическим внешним воздействующим факторам
ГОСТ 17494—87 Машины электрические вращающиеся. Классификация степеней защиты, обеспечиваемых оболочками вращающихся электрических машин
ГОСТ 17516.1—90 Изделия электротехнические. Общие требования в части стойкости к механическим внешним воздействующим факторам
ГОСТ 18620—86 Изделия электротехнические. Маркировка
ГОСТ 20459—87 Машины электрические вращающиеся. Методы охлаждения. Обозначения
ГОСТ 20815—93 Машины электрические вращающиеся. Механическая вибрация некоторых видов машин высотой оси вращения 56 мм и более. Измерение, оценка и допустимая вибрация
ГОСТ 21130—75 Изделия электротехнические. Зажимы заземляющие и знаки заземления Конструкция и размеры
ГОСТ 22789—94 Устройства комплектные низковольтные. Общие технические требования и методы испытаний
ГОСТ 23216—78 Изделия электротехнические. Хранение, транспортировка, консервация, упаковка. Общие требования и методы испытаний
ГОСТ 24555—81 СГИП. Порядок аттестации испытательного оборудования. Основные положения
ГОСТ 24607—88 Преобразователи частоты полупроводниковые. Общие технические условия
ГОСТ 24682—81 Изделия электротехнические. Общие технические требования в части воздействия специальных сред
ГОСТ 24683—81 Изделия электротехнические. Методы контроля стойкости к воздействию специальных сред
ГОСТ 25953—83 Преобразователи электроэнергии полупроводниковые мощностью 5 кВ · А и выше. Параметры
ГОСТ 26567—85 Преобразователи электроэнергии полупроводниковые. Методы электрических испытаний
ГОСТ 28167—89 Преобразователи переменного напряжения полупроводниковые. Общие технические требования

3 КЛАССИФИКАЦИЯ
3.1 Электроприводы классифицируют по принципу действия на следующие основные группы
3.1.1 на базе полупроводниковых преобразователей частоты (далее — преобразователи частоты) и асинхронных двигателей (далее — двигателей) с короткозамкнутым ротором со следующими составными частями
— согласующий трансформатор или реактор,
— системы управления, защиты, диагностики, сигнализации и контроля,
— двигатель,
— фильтро-компенсационное устройство (при необходимости);
3.1.2 на базе преобразователей частоты и двигателей с фазным ротором (контактных или бесконтактных) со следующими составными частями
— преобразователь частоты с трансформаторным и дроссельным оборудованием,
— системы управления, защиты, диагностики, сигнализации и контроля,
— двигатель.

4 ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ
4.1 Номинальные параметры электроприводов должны соответствовать значениям, приведенным в таблице 1.
Таблица 1 — Номинальные параметры

Наименование параметра
Значение параметра

Номинальная мощность на валу двигателя
По ГОСТ 12139

Номинальное напряжение питающей сети, В
380, 660, 6000, 10000

Номинальная частота тока питающей сети, Гц
50

Номинальная частота вращения двигателя синхронная
По ГОСТ 106831

Примечания 1. Номинальная мощность электроприводов должна обеспечиваться при высоте над уровнем моря до 1000 м и температуре охлаждающею воздуха до 313 К (40 °С) 2. Мощность, ресурс и другие технические требования к электроприводам при работе в условиях, отличающихся от указанных, устанавливаются в ТУ на электроприводы конкретных типов. 3. По согласованию с заказчиком допускается применение номинальных значений напряжения питающей сети, отличающихся от указанных в таблице 1.

4.2 Электроприводы, поставляемые на экспорт, должны изготавливаться также на номинальную частоту тока питающей сети 60 Гц. Номинальные мощности, напряжения и частоты вращения электроприводов частотой 60 Гц определяются по согласованию между изготовителем и потребителем и устанавливаются в ТУ на электроприводы конкретных типов.
4.3 Габаритные, установочно-присоединительные размеры и масса
составных частей электроприводов должны быть указаны в ТУ на электроприводы конкретных типов и ТУ на составные части электроприводов.

5 ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
5.1 Технические требования

5.1.1 Электроприводы должны изготавливаться в соответствии с требованиями настоящего стандарта и ТУ на электроприводы конкретных типов по рабочим чертежам, утвержденным б установленном порядке. Электроприводы, работающие в специальных средах, должны изготавливаться в соответствии с требованиями ГОСТ 24682.
5.1.2 Применяемые в электроприводах комплектующие изделия должны соответствовать стандартам и ТУ на них, а также условиям их работы в составе электроприводов.
В качестве приводных двигателей используют серийные двигатели, а также двигатели специального исполнения.
Условия применения двигателей в составе электроприводов должны быть оговорены в ТУ на двигатели конкретных типов.
5.1.3 Питание электроприводов должно предусматриваться от трехфазных сетей переменного тока частоты 50 (60) Гц.
Питание внутренних систем электроприводов должно предусматриваться от трехфазного напряжения переменного тока 380 или 660 В частотой 50 (60) Гц, а также от постоянного тока 220 В.
Работа электропривода не должна приводить к отклонению качества электроэнергии питающей сети от требований ГОСТ 13109.
5.1.4 Электроприводы должны обеспечивать нормальную безаварийную работу с сохранением номинальной мощности при
— отклонениях напряжения питающей сети от номинального значения до ±10 %;
— отклонениях напряжения питания внутренних систем от +10 до -15 %;
— отклонениях частоты питающей сети до ±2,5 %,
— одновременном отклонении напряжения до ±10 % и частоты до ±2,5 % при условии, что при работе с повышенным напряжением и пониженной частотой или с пониженным напряжением и повышенной частотой сумма абсолютных значений отклонений напряжения и частоты не превышает 10 %.
5.1.5 Электроприводы должны сохранять работоспособность (без поддержания нормируемых параметров) при кратковременном (до 60 с) снижении напряжения питания до 80 % номинального значения при номинальной частоте сети и номинальной нагрузке двигателя. По согласованию с заказчиком допускается снижение напряжения питания до 75 % номинального значения.
5.1.6 Электроприводы должны обеспечивать режим автоматического самозапуска после кратковременного (до 2,5 с) перерыва питания при появлении напряжения на шинах питающей сети и/или собственных нужд в режиме автоматического управления. Начальное значение напряжения должно оговариваться в ТУ на электроприводы конкретных типов.
5.1.7 Электроприводы должны сохранять работоспособность (без поддержания нормируемых параметров) при работе в аварийных режимах со следующими неоднократными отклонениями частоты питающей сети
— в диапазоне минус (2,5—4,0) % продолжительностью не более 5 мин;
— в диапазоне минус (4,0—6,0) % продолжительностью не более 1 мин;
— в диапазоне минус (6,0—8,0) % продолжительностью не более 10 с.
После прекращения действий указанных условий эксплуатации изделия должны восстанавливать требуемую точность и номинальные параметры.
5.1.8 Маркировка, консервация и упаковка
Маркировка составных частей электроприводов должна соответствовать ГОСТ 18620 и сохраняться в процессе эксплуатации и хранения.
Маркировка тары — по ГОСТ 14192.
Консервация и упаковка — по ГОСТ 23216.
Категория упаковки и внутренняя упаковка должны быть указаны в ТУ на электроприводы конкретных типов.
5.2 Конструктивные требования

5.2.1 Составные части электроприводов, за исключением двигателя, должны размещаться в шкафах. Вне шкафов допускается установка в соответствующих ограждениях трансформаторного и реакторного оборудования.
5.2.2 Степень защиты шкафов должна выбираться по ГОСТ 14254 и устанавливаться в ТУ на электроприводы конкретных типов.
Степень защиты двигателей и их коробок выводов должна выбираться по ГОСТ 17494 и устанавливаться в ТУ на электроприводы конкретных типов.
5.2.3 Элементы и узлы электроприводов могут конструктивно выполняться в виде выемных блоков или съемных панелей. Блоки должны легко вставляться в соответствующие места, при этом должен быть обеспечен надежный электрический контакт силовых цепей и цепей управления.
Одноименные составные части электроприводов одного типа должны быть взаимозаменяемыми. При замене блоков системы управления допускается регулировка параметров (при помощи органов настройки).

5.2.4 Конструкция электроприводов должна быть ремонтопригодной и обеспечивать
— доступность осмотра и подтяжки мест крепления контактных соединений и составных частей (сборочных единиц) и исключение самоотвинчивания;
— возможность снятия составных частей и сборочных единиц, вышедших из строя и подлежащих замене, без демонтажа других составных частей или с частичным демонтажем при помощи стандартного слесарного инструмента;
— доступность к сборочным единицам, подлежащим регулированию и настройке;
— доступность к контрольно-измерительным приборам для их замены и поверки;
— возможность съема функциональных блоков электроприводов для ремонта и контроля их параметров;
— возможность применения грузоподъемных механизмов.
5.2.5 Вид охлаждения составных частей электроприводов и параметры охлаждающей среды должны быть указаны в ТУ на электроприводы конкретных типов. Вид охлаждения двигателя должен соответствовать ГОСТ 20459.
5.2.6 Защитно-декоративные и лакокрасочные покрытия электроприводов должны обеспечивать сохранность поверхностей и коррозионную стойкость деталей и сборочных единиц при хранении и эксплуатации.
5.2.7 Электрохимически разнородные металлические материалы, применяемые для изготовления соприкасающихся между собой сборочных единиц и деталей, должны быть выбраны в соответствии с требованиями ГОСТ 9.005.
5.2.8 Контактные электрические соединения силовых гоковедущих цепей должны соответствовать требованиям ГОСТ 10434.
5.2.9 Уровень вибрации двигателей на холостом ходу при их работе в составе электропривода должен соответствовать требованиям ГОСТ 20815.
5.2.10 Предельно допустимые превышения температуры нагрева частей двигателей должны соответствовать ГОСТ 183.
Температура нагрева других составных частей электроприводов в наиболее нагретых точках, соприкасающихся с электрической изоляцией, не должна превышать значений, установленных ГОСТ 8865 для соответствующего класса нагревостойкости электрической изоляции.
5.3 Требования к техническим параметрам и режимам

5.3 1 Номинальные токи на выходе преобразователей частоты должны выбираться из ряда по ГОСТ 28167 4,0; 5,0; 6,3; 10,0; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0; 100; 125; 160; 200; 250; 315; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500 А.
5.3.2 Номинальные напряжения на выходе преобразователей частоты должны выбираться из ряда 380; 660; 6000; 10000 В.
По согласованию с заказчиком допускается применение значений напряжения, отличающихся от указанных.
При коротких линиях допускается за номинальное выходное напряжение преобразователей частоты принимать номинальное напряжение двигателей, входящих в состав электроприводов.

5.3.3 Рабочий диапазон изменения выходного напряжения преобразователей частоты должен быть от 0 до 100 % номинального напряжения.
5.3.4 Рабочие диапазоны регулирования частоты вращения двигателя должны выбираться из ряда 1 2; 1 5; 1 10; 1 20; 1 30; 1 50; 1 100.
5.3.5 Номинальные частоты на выходе преобразователей частоты должны выбираться из ряда по ГОСТ 25953 5; 10; 12,5; 16,66; 25; 50; 60; 100 Гц.
5.3.6 Электроприводы должны обеспечивать
— частотный пуск и регулирование частоты вращения электродвигателей;
— работу при изменении момента нагрузки от 0 до номинального;
— максимальный момент двигателя, определяемый допустимой кратностью перегрузки преобразователя частоты по току. Кратность перегрузки указывается в ТУ на электроприводы конкретных типов.
5.3.7 При отношении максимального тока к номинальному, равному 2,25, электроприводы должны допускать режимы работы, приведенные в таблице 2.
Таблица 2 — Режимы работы

Режим
Нагрузка в процентах от номинального тока
Продолжительность нагрузки, с

1
100
Длительно

2
150
120

3
175
60

4
200
15

5
225
10

Примечания 1 Средние квадратичные значения тока в течение цикла не должны превышать номинального за время усреднения не более 10 мин. 2. При других значениях отношения максимального тока к номинальному соответствующие значения нагрузки и ее продолжительности указываются в ТУ на электроприводы конкретных типов.

5.3.8 Значения коэффициента полезного действия и коэффициента мощности электропривода при работе с номинальной нагрузкой должны соответствовать требованиям ТУ на электроприводы конкретных типов.
5.3.9 Радиопомехи, создаваемые при работе электроприводов в сетях низкого напряжения, не должны превышать значений, предусмотренных в «Общесоюзных нормах допускаемых индустриальных радиопомех» (Нормы 8—72).
5.4 Требования к системам управления электроприводов

5.4.1 В электроприводах должна быть предусмотрена возможность местного или дистанционного управления, в том числе и частотой вращения двигателя.
Электроприводы должны иметь возможность управления от автоматической системы управления технологическими процессами (АСУ ТП).
5.4.2 Системы управления электроприводов должны обеспечивать
— разгон и торможение двигателей с заданным ускорением в пределах допустимой перегрузки преобразователя частоты;
— диапазон времени изменения частоты от минимальной до максимальной в заданных пределах,
— статическую точность поддержания частоты вращения, определяемую наклоном механической характеристики двигателя.
Замкнутые системы управления электроприводов должны обеспечивать
— заданное статическое отклонение частоты вращения;
— возможность автоматического регулирования значений ускорения и замедления с заданной точностью;
— заданные значения перерегулирования частоты вращения при изменении задания и время отработки сигнала;
— ограничение значений тока двигателя в динамических режимах и при перегрузках на заданном уровне с заданной точностью.
Числовые значения всех величин должны указываться в ТУ на электроприводы конкретных типов.
5.5 Требования к системам зашиты, диагностики, сигнализации и контроля

5.5.1 Электроприводы должны быть термически и динамически устойчивы при всех аварийных режимах в течение времени срабатывания установленных в них систем защиты.
5.5.2 Электроприводы должны иметь следующие виды защиты
— от коротких замыканий в преобразователе частоты и нагрузке;
— от недопустимых перегрузок по току (с интегрально-зависимой защитой);
— от перегрева преобразователя частоты;
— от внешних и внутренних коммутационных перенапряжений;
— от пробоя тиристоров;
— от нарушения коммутации и сбоев в цепях управления преобразователя частоты;
— от исчезновения вентиляции (в системах с принудительным охлаждением);
— от снижения расхода охлаждающей среды;
— от исчезновения напряжения сети;
— от недопустимого понижения напряжения сети;
— от недопустимого повышения напряжения сети;
— от обратной фазировки питающего напряжения;
— от обратного вращения ротора двигателя;
— от работы на двух фазах;
— от повышения частоты вращения двигателя сверх допустимой (св. 120 %).
Необходимость защиты от перегрева преобразователя частоты, от внешних и внутренних коммутационных перенапряжений и нарушения коммутации и сбоев в цепях управления, от обратной фазировки питающего напряжения, от обратного вращения ротора, интегрально-зависимой защиты и кнопки аварийного отключения электропривода должна быть оговорена в ТУ на конкретные типы электроприводов.
5.5.3 Электроприводы должны иметь систему диагностики, позволяющую определить место возникновения неисправности в электроприводе на уровне его функциональных частей в случае срабатывания систем защиты.
5.5.4 Составные части электроприводов, размещенные в шкафах и имеющие элементы, находящиеся под напряжением св. 1000 В, должны быть снабжены блокировками, препятствующими включению электроприводов при открытых дверях шкафов и воздействующими на отключение питания электроприводов или препятствующими открыванию.
5.5.5 Электроприводы должны иметь сигнализацию
— о включенном и отключенном состояниях;
— о срабатывании защиты.
Сигналы должны выдаваться в систему дистанционного управления и в АСУ ТП.
5.5.6 В электроприводах должны быть предусмотрены средства контроля и (или) измерения (прямым или косвенным методом) выходного тока и напряжения преобразователя частоты, частоты переменного тока на выходе преобразователя частоты или частоты вращения двигателя при наличии датчика частоты вращения.
Электроприводы должны иметь возможность передачи унифицированных [± 5, ± (4—20) мА] и «сухих» сигналов по системам диагностики, сигнализации и управления в системе АСУ ТП. Электроприводы должны иметь выводы для подключения внешних средств измерения.
5.6 Требования по стойкости к внешним воздействиям

5.6.1 Номинальные значения климатических факторов — по ГОСТ 15150 и ГОСТ 15543.1. Верхнее и нижнее значения рабочей температуры должны указываться в ТУ на электроприводы конкретных типов.
Составные части электроприводов могут иметь разные виды климатического исполнения, что должно быть указано в ТУ на электроприводы конкретных типов.
5.6 2 Электроприводы должны быть механически прочными и устойчивыми в соответствии с требованиями ГОСТ 17516.1. Группу механического исполнения устанавливают в ТУ на электроприводы конкретных типов.
Составные части электроприводов могут иметь разные группы механического исполнения, что должно быть указано в ТУ на электроприводы конкретных типов.
5.6.3 Электроприводы должны допускать эксплуатацию в условиях воздействия пыли.
Допустимая концентрация инертной пыли в окружающей среде устанавливается в ТУ на электроприводы конкретных типов
Уровень запыленности внутри двигателя и остальных составных частей не должен нарушать их нормальной работы.
5.6.4 Составные части электроприводов должны соответствовать ГОСТ 24682 и, если это указано в ТУ на электроприводы конкретных типов, должны быть выполнены в химостойком исполнении по ГОСТ 24682.
5.7 Требования к надежности

5.7.1 Номенклатура показателей надежности должна соответствовать ГОСТ 20.39.312. Значения показателей надежности в зависимости от назначения и условий применения должны устанавливаться в ТУ на электроприводы конкретных типов
5.7.2 Средняя наработка на отказ в условиях, допускаемых по ТУ на электроприводы конкретных типов, — не менее 20000 ч.
5.7.3 Среднее время восстановления — не более 3 ч.
5.7.4 Средний ресурс до капитального ремонта — не менее 6 лет.
5.7.5 Срок службы до списания двигателя — не менее 20 лет, остальных составных частей — не менее 15 лет.
5.7.6 Срок сохраняемости в упаковке предприятия-изготовителя — два года.
5.7.7 За критерии отказов и предельных состояний принимают несоответствие требованиям настоящего стандарта, ТУ на электроприводы конкретных типов
— выходных параметров;
— допустимых отклонений выходных параметров,
— пределов регулирования выходных параметров;
— сопротивления изоляции.
Отключение электропривода и восстановление его с помощью одиночного комплекта ЗИП в течение времени восстановления, а также отключение защитами не являются отказом электропривода.
В ТУ на электроприводы конкретных типов допускается устанавливать дополнительные критерии отказов и предельных состояний.
5.8 Комплектность

Требования по комплектности должны быть указаны в ГУ на электроприводы конкретных типов. К электроприводу следует прилагать эксплуатационную документацию по ГОСТ 2.601 в составе, указанном в ТУ на электроприводы конкретных типов.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
6.1 Требования безопасности электроприводов — по ГОСТ 12.2.007.0, «Правилам устройства электроустановок», утвержденным Главтехуправлением и Госэнергонадзором Минтопэнерго СССР», Правилам эксплуатации электроустановок потребителей», утвержденным Госэнергонадзором Минтопэнерго РФ 31.03.1992 г., «Правилам техники безопасности при эксплуатации электроустановок потребителей», утвержденным Главгосэнергонадзором 21.12.1984 г., а также ТУ на электроприводы конкретных типов.
Двигатели электроприводов должны также соответствовать требованиям ГОСТ 12.2.007.1. преобразователи — требованиям ГОСТ 12.2.007.11, а управляющие устройства — требованиям ГОСТ 22789.
6.2 Электроприводы должны соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004.
6.3 По способу защиты от поражения электрическим током электроприводы должны относиться к классу 01 по ГОСТ 12.2.007.0.
6.4 В ТУ на конкретные типы электроприводов должны быть указаны следующие параметры
— сопротивление изоляции обмоток статора двигателя относительно корпуса и между обмотками в холодном состоянии и при рабочей температуре;
— сопротивление изоляции обмотки и контактных колец фазного ротора относительно сердечника в холодном состоянии и при рабочей температуре;
— сопротивление изоляции электрических цепей остальных составных частей электроприводов относительно корпуса и сопротивления изоляции между электрически разобщенными цепями в холодном состоянии и при рабочей температуре.
6.5 Все составные части электроприводов должны быть подвергнуты проверке электрической прочности изоляции в соответствии с требованиями нормативной документации на них.
6.6 Двигатели, преобразователи частоты, трансформаторы и реакторы со стальными сердечниками должны иметь заземляющие зажимы. Металлические части конструкции, которые могут оказаться под напряжением, должны быть заземлены посредством специальных конструктивных мер.
Конструкция, размеры заземляющих зажимов и знак заземления должны соответствовать ГОСТ 21130.
Значение сопротивления заземления должно быть не более 0,1 Ом.
6.7 Конструкция выводных устройств составных частей электроприводов должна исключать возможность случайного прикосновения к токоведущим частям, электрических перекрытий, замыканий проводников между собой и на корпус.
6.8 Шумовые характеристики электроприводов не должны превышать требований ГОСТ 12.1.003 и устанавливаться в ТУ на электроприводы конкретных типов.
6.9 Допустимые вибрации двигателя — по 5.2.9.
6.10 Электрические испытания и измерения на электроприводах должны проводиться в соответствии с требованиями безопасности по ГОСТ 12.3.019.

7 ПРАВИЛА ПРИЕМКИ
7.1 Для проверки соответствия электроприводов требованиям настоящего стандарта и технических условий проводят приемочные, квалификационные, приемо-сдаточные, периодические, типовые и сертификационные испытания по ТУ на электроприводы конкретных типов.
Испытания проводят на предприятии-изготовителе или на месте установки электропривода. Отдельные виды испытаний по согласованию между изготовителем и потребителем проводят на составных частях электроприводов по стандартам или ТУ на конкретные типы составных частей.
7.2 Приемочные испытания должны проводиться на опытном или головном образце электропривода по программе, приведенной в таблице 3.
Таблица 3 — Программа приемочных испытаний

Наименование проверок и испытаний
Пункты

технических требований
методов контроля

1 Внешний осмотр, проверка габаритных, установочно-присоединительных размеров и массы
4.3, 5.1.1, 5.1.2, 5.2.6, 5.2.8, 5.8, 9
8.3, 8.4

2 Измерение сопротивления изоляции
6.4
8.5

3 Испытание электрической прочности изоляции
6.5
8.6

4 Проверка заземлений составных частей
6.6
8.13

5 Проверка электрической блокировки
5.5.4
8.14

6 Проверка систем защиты, диагностики, сигнализации и контроля
5.5.2, 5.5.3, 5.5.5, 5.5.6
8.14

7 Проверка рабочего диапазона изменения выходного напряжения преобразователя частоты
5.3.3
8.14

8 Проверка системы управления электроприводом
5.4.1, 5.4.2, 5.3.6
8.14

9 Проверка работы при отклонении параметров питающей сети
5.1.4, 5.1.5, 5.1.7
8.14

10 Проверка самозапуска
5.1.6
8.14

11 Испытание на нагревание
5.2.10
8.7

12 Определение КПД и коэффициента мощности
5.3.8
8.14

13 Проверка перегрузки
5.3.7
8.14

14 Проверка уровня радиопомех
5.3.9
8.8

15 Проверка уровня вибрации двигателя
5.2.9
8.9

16 Проверка уровня шума
6.8
8.10

17 Проверка конструктивного выполнения и взаимозаменяемости
5.2.1, 5.2.3
8.14

18 Проверка степени защиты составных частей
5.2.2
8.11

19 Проверка ремонтопригодности
5.2.4
8.14

20 Проверка на стойкость к механическим факторам
5.6.2
8.12

21 Проверка устойчивости при воздействии пыли
5.6.3
8.12

22 Проверка на стойкость к климатическим воздействиям
5.6.1
8.12

23 Проверка термической и динамической устойчивости
5.5.1
8.14

24 Проверка стойкости к воздействию специальных сред
5.6.4
8.15

25 Испытание на пожарную опасность
6.2
8.16

26 Проверка надежности
5.7
8.17

Программа приемочных испытаний может быть дополнена в зависимости от требований ТУ на электроприводы конкретных типов.
7.3 Квалификационные испытания должны проводиться в объеме программы приемочных испытаний на образцах из установочной серии (первой промышленной партии) электроприводов.
7.4 Приемо-сдаточные испытания

7.4.1 Приемо-сдаточным испытаниям подвергают каждый электропривод по программе, указанной в таблице 4.
Таблица 4 — Программа приемосдаточных испытаний

Наименование проверок и испытаний
Пункты

технических требований
методов контроля

1 Внешний осмотр
5.1.1, 5.1.2, 5.2.6, 5.2.8, 5.8, 9
8.3

2 Измерение сопротивления изоляции
6.4
8.5

3 Испытание электрической прочности изоляции
6.5
8.6

4 Проверка заземлений составных частей
6.6
8.13

5 Проверка электрической блокировки
5.5.4
8.14

6 Проверка систем защиты, диагностики, сигнализации и контроля
5.5.2, 5.5.3, 5.5.5, 5.5.6
8.14

7 Проверка системы управления электроприводом
54.1, 5.4.2
8.14

8 Проверка рабочего диапазона изменения выходного напряжения преобразователя частоты
5.3.3
8.14

9 Проверка самозапуска
5.1.6
8.14

7.4.2 Программа приемо-сдаточных испытаний может быть дополнена с учетом требовании к электроприводам конкретных типов.
7.5 Периодические испытания

7.5.1 Периодические испытания должны проводиться на одном образце каждого типа электропривода, прошедшем приемо-сдаточные испытания, с целью контроля стабильности качества.
7.5.2 Периодичность проведения испытаний устанавливают в ТУ на электроприводы конкретных типов, но не реже одного раза в три года.
7.5.3 Программу периодических испытаний составляют исходя из объема программы приемочных испытаний и указывают в ТУ на электроприводы конкретных типов.
7.6 Типовые испытания

Типовые испытания должны проводиться при изменении комплектности, конструкции, материалов или технологии изготовления с целью оценки эффективности и целесообразности вносимых изменений.
Типовые испытания проводят по программе, утвержденной в установленном порядке.
По результатам типовых испытаний принимают решение о целесообразности внесения изменений в конструкторскую документацию.
7.7 Если при периодических или типовых испытаниях один образец электропривода не будет соответствовать требованиям ТУ, то допускается проведение повторных испытаний на двух образцах.
Результаты повторных испытаний считают окончательными.
7.8 Сертификационные испытания проводят по отдельной программе.

8 МЕТОДЫ КОНТРОЛЯ
8.1 Испытания проводят в климатических условиях (температура, относительная влажность, барометрическое давление) испытательной станции предприятия-изготовителя или на месте установки электропривода, если иное не предусмотрено особо для отдельных видов испытаний в ТУ на электроприводы конкретных типов.
8.2 Перечень оборудования, необходимого для контроля и испытаний, и класс точности измерительных приборов должен быть приведен в приложениях к ТУ на электроприводы конкретных типов
При испытаниях должны использоваться приборы класса точности не ниже.
0,5 — для измерения всех электрических величин;
1,0 — для измерения частоты вращения.
Средства измерений должны быть поверены в порядке и в сроки, установленные ГОСТ 8.513. Испытательное оборудование должно быть аттестовано в соответствии с ГОСТ 24555.
8.3 Внешнему осмотру подвергают все доступные части электроприводов без разборки, при этом проверяют
— соответствие изделий сборочным чертежам и электромонтажным схемам,
— качество сборки и монтажа;
— качество окраски и гальванопокрытий;
— наличие зажимов с болтами для заземлений;
— возможность применения грузоподъемных механизмов;
— наличие знака высокого напряжения;
— маркировку.

8.4 Габаритные и установочно-присоединительные размеры составных частей электроприводов измеряют с помощью мерительного инструмента, обеспечивающего необходимую точность измерений. Массу составных частей электроприводов определяют расчетным путем или взвешиванием на весах, обеспечивающих необходимую точность измерения.
8.5 Сопротивление изоляции электроприводов измеряют на составных частях.
Сопротивления изоляции обмоток двигателя относительно корпуса машины и между обмотками измеряют по ГОСТ 11828. Сопротивление изоляции преобразователя частоты измеряют по ГОСТ 26567. Сопротивления изоляции остальных составных частей измеряют по стандартам или техническим условиям на них.
8.6 Электрическую прочность изоляции проверяют на составных частях по ГОСТ 11828 для двигателя, по ГОСТ 26567 — для преобразователя и по стандартам или техническим условиям — для остальных составных частей.
Места приложения испытательных напряжении и их значения должны быть установлены в ТУ на электроприводы конкретных типов.
8.7 Испытания на нагревание проводят методом непосредственной нагрузки в соответствии с требованиями ГОСТ 7217, ГОСТ 11828, ГОСТ 26567 по методике, которая должна быть приведена в ТУ на электроприводы конкретных типов.
8.8 Уровень радиопомех измеряют по ГОСТ 16842.
8.9 Уровень вибрации двигателя при его работе в составе электропривода проверяют по ГОСТ 11828.
8.10 Уровень шума определяют по ГОСТ 12.1.003.
8.11 Степень защиты двигателя проверяют по ГОСТ 17494, остальных составных частей — по ГОСТ 14254.
8.12 Методы испытаний при проверке стойкости к климатическим и механическим внешним воздействиям должны соответствовать требованиям ГОСТ 16962.1 и ГОСТ 16962.2.
8.13 Заземления проверяют на составных частях путем измерения сопротивления между заземляющим болтом и каждой доступной прикосновению металлической нетоковедущей частью, которая может оказаться под напряжением (метод амперметра и вольтметра или двойного моста постоянного тока).
8.14 Электроприводы на соответствие требованиям 5.1.4—5.1.7, 5.2.1, 5.2.3, 5.2.4, 5.3.3, 5.3.6— 5.3,8, 5.4.1, 5.4.2, 5.5.1—5.5.6 проверяют по методике, которая должна быть приведена в ТУ на электроприводы конкретных типов.
8.15 Стойкость к воздействию специальных сред проверяют по ГОСТ 24683.
8.16 Испытание на пожарную опасность проводят по ГОСТ 12.1.004.
8.17 Надежность электроприводов проверяют по методике, установленной в ТУ на электроприводы конкретных типов.

9 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ
Транспортирование и хранение электроприводов — по ГОСТ 23216. Категория и транспортная тара должны быть указаны в ТУ на электроприводы конкретных типов.

10 УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ
Электроприводы устанавливают, монтируют и эксплуатируют в условиях и в соответствии с требованиями, указанными в эксплуатационной документации и ТУ на электроприводы конкретных типов.

11 ГАРАНТИИ ИЗГОТОВИТЕЛЯ
11.1 Изготовитель гарантирует соответствие электроприводов требованиям настоящего стандарта и ТУ на электроприводы конкретных типов при соблюдении условий и правил хранения, транспортирования, монтажа и эксплуатации.
11.2 Гарантийный срок эксплуатации — три года со дня ввода в эксплуатацию.

ГОСТ Р 50462-92
(МЭК 446-89)
Группа Е08
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ИДЕНТИФИКАЦИЯ ПРОВОДНИКОВ ПО ЦВЕТАМ ИЛИ ЦИФРОВЫМ ОБОЗНАЧЕНИЯМ
Identification of conductors by
colours or numerals
ОКП 35 0000
Дата введения 1994-01-01
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом по стандартизации ТК 33 “Электротехника”
РАЗРАБОТЧИКИ
Р.Н.Карякин, д-р техн.наук, проф. (руководитель);
С.В.Егоров; Г.Д.Дасько; В.В.Попов
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 28.12.92 N 1578
Настоящий стандарт подготовлен методом прямого применения международного стандарта МЭК 446-89 ”Идентификация проводников по цветам или цифровым обозначениям” и полностью ему соответствует
3. ВВЕДЕН ВПЕРВЫЕ
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, в котором приведена ссылка
Обозначение государственного стандарта, на который дана ссылка
Обозначение соответствующего международного стандарта

3.1.1
ГОСТ 12.1.009-76

Приложение
ГОСТ 12.2.007.0-75

3.1.1
ГОСТ 28763-90
МЭК 757-83

1. ОБЛАСТЬ РАСПРОСТРАНЕНИЯ
Настоящий стандарт устанавливает требования по применению цветов и цифр для идентификации проводников, используемых в качестве элементов электрических цепей оборудования и установок.

2. НАЗНАЧЕНИЕ
Настоящий стандарт устанавливает правила использования определенных цветов или цифр для идентификации как отдельных изолированных жил в кабелях, так и изолированных или неизолированных проводников, в т.ч. шин, в оборудовании и установках для обеспечения надежной и безопасной эксплуатации последних.
Стандарт не устанавливает границы цветовых оттенков и требований к качеству расцветки и цифровых обозначений.
Примечание. В стандартах и технических условиях на оборудование конкретных видов могут быть приведены дополнительные требования по идентификации.

3. ЦВЕТОВАЯ ИДЕНТИФИКАЦИЯ
3.1. Использование одного цвета
3.1.1. Общие положения
Для идентификации проводников могут быть использованы следующие цвета черный, коричневый, красный, оранжевый, желтый, зеленый, синий (включая голубой), фиолетовый, серый, белый, розовый, бирюзовый.
Перечень цветов установлен по ГОСТ 28763.
Для большей безопасности желтый и зеленый цвета не должны использоваться, если существует опасность смешивания указанных цветов с комбинацией желтого и зеленого цветов (п.3.2).
В дополнение к комбинации зеленого и желтого цветов, которую используют для нулевого защитного проводника*, предпочтительными для идентификации других проводников являются голубой, черный и коричневый цвета.
________________
* Здесь и далее применен термин «нулевой защитный проводник», установленный ГОСТ 12.1.009 и “Правилами устройства электроустановок”. В МЭК 446 используют термин “защитный проводник”.
Рекомендуется, чтобы идентификация по цвету производилась по всей длине проводника окраской изоляции либо цветовыми метками. Как вариант рекомендуется дополнительная идентификация в выбранных местах.
3.1.2. Использование голубого цвета
Голубой цвет предназначен для нулевого рабочего или среднего проводника.
Если схема содержит нулевой рабочий проводник или средний проводник, идентифицируемый по цвету, то использованный цвет для данного назначения должен быть голубым. В этом случае голубой цвет не следует использовать для идентификации другого проводника, если существует риск смешивания.
Если же нулевой рабочий проводник или средний проводник отсутствует, то голубой цвет в многожильном кабеле может также использоваться и для других видов применения, за исключением применения в качестве нулевого защитного проводника.
Если используют цветовую идентификацию, то неизолированные проводники, применяемые в качестве нулевых рабочих проводников, должны окрашиваться в голубой цвет по всей их длине или полосами голубого цвета шириной от 15 до 100 мм в каждом отсеке или блоке, либо в любом доступном месте.
3.2. Использование двухцветных комбинаций
3.2.1. Общие положения
Могут быть использованы комбинации цветов, перечисленных в п.3.1, если нет опасности их смешивания.
Желтый и зеленый цвета не должны использоваться для других комбинаций, состоящих из двух цветов, кроме зелено-желтой комбинации.
3.2.2. Использование зеленого и желтого цветов
Зелено-желтая комбинация должна использоваться только для идентификации нулевого защитного проводника.
Примечания
1. Совмещенный нулевой рабочий и нулевой защитный проводник (PEN-проводник) обозначают одним из следующих способов
— зелено-желтым цветом по всей длине и светло-голубым на концах;
— светло-голубым цветом по всей длине и зелено-желтым на концах.
Неизолированные проводники, используемые в качестве нулевых защитных проводников, должны быть окрашены полосами одинаковой ширины зеленого и желтого цветов шириной от 15 до 100 мм, прилегающими друг к другу, либо по всей длине каждого проводника, либо в каждом отсеке или блоке, или в любом доступном месте. В случае использования клейкой ленты следует применять только двухцветную ленту.
Для изолированных проводников комбинация зеленого и желтого цветов должна быть такой, чтобы для каждого участка длиной 15 мм изолированного проводника один из этих цветов покрывал по крайней мере 30 и не более 70% поверхности проводника, причем другой цвет должен покрывать остальную часть поверхности.
2. Если нулевой защитный проводник можно идентифицировать по форме, конструкции или положению (например, концентрический проводник), то кодирование цветами по всей его длине является необязательным, но концы или доступные места должны быть четко обозначены графическим символом или комбинацией зеленого и желтого цветов.
Примеры идентификации приведены в приложении.

4. ЦИФРОВАЯ ИДЕНТИФИКАЦИЯ
4.1. Общие положения
Систему цифрового обозначения применяют для идентификации проводников, за исключением проводников с обозначением зелено-желтым цветом.
Обозначение должно быть легко распознаваемым и долговечным.
Все цифровые обозначения должны быть хорошо читаемыми, составлять резкий контраст с цветом изоляции. Обозначение выполняют арабскими цифрами.
4.2. Многожильные кабели
Все изолированные жилы многожильного кабеля должны быть пронумерованы в натуральной последовательности чисел.
Цифровые обозначения должны повторяться через равные промежутки d по всей длине жилы, причем последовательные обозначения располагаются ”валетом”.
Расположение цифровых обозначений должно быть по крайней мере таким, как показано на черт.1 при продольной надписи (по пути следования) или на черт.2 при поперечной надписи.

Черт.1

Черт.2

Места размещения цифровых обозначений и их интервал d следует указывать в стандартах и технических условиях на соответствующие изделия.
Для исключения смешивания цифры 6 и 9 или комбинации, содержащие эти цифры, должны быть подчеркнуты.

ПРИЛОЖЕНИЕ
Справочное
ПРИМЕРЫ ИДЕНТИФИКАЦИИ
1. Цветовая идентификация жил кабелей, изолированных поливинилхлоридным пластикатом или изолированных резиной
— трехжильный кабель голубой, черный, коричневый либо комбинация зеленого и желтого (нулевой защитный проводник), голубой, черный;
-четырехжильный кабель (включая нулевой защитный проводник) комбинация зеленого и желтого (нулевой защитный проводник), голубой, черный, коричневый.
2. Цветовая идентификация трех одножильных кабелей черного цвета в одном комплекте
— один кабель с меткой голубого цвета;
— один кабель без метки или с меткой черного цвета;
— один кабель с меткой коричневого цвета.
3. Цветовая идентификация проводников по функциональному назначению цепей, в которых используют (согласно ГОСТ 12.2.007.0)
— для проводников в силовых цепях — черный;
— для проводников в цепях управления, измерения и сигнализации переменного тока — красный;
— для проводников в цепях управления, измерения и сигнализации постоянного тока — синий;
— для нулевых защитных проводников — комбинация зеленого и желтого;
— для проводников, соединенных с нулевым рабочим проводником и не предназначенных для заземления, — голубой.

ГОСТ 2.702-75
УДК 744.43 621.3.062 006.354 Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
Единая система конструкторской документации

ПРАВИЛА ВЫПОЛНЕНИЯ ЭЛЕКТРИЧЕСКИХ СХЕМ
Unified system for design documentation.
Rules for presentation of electric schemes
Дата введения 01.07.77
Настоящий стандарт распространяется на электрические схемы изделий всех отраслей промышленности, а также электрические схемы энергетических сооружений и устанавливает правила их выполнения вручную или автоматизированным способом.
Виды и типы схем и общие требования к выполнению их — по ГОСТ 2.701.
Обозначения буквенно-цифровые в электрических схемах — по ГОСТ 2.710.
Стандарт соответствует СТ СЭВ 1188 в части разд. 2—4, 6—9 (см. приложение).
(Измененная редакция, Изм. № 2).

1. ПРАВИЛА ВЫПОЛНЕНИЯ СТРУКТУРНЫХ СХЕМ
1.1. На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними.
1.2. Функциональные части на схеме изображают в виде прямоугольника или условных графических обозначений.
1.3. Графическое построение схемы должно давать наиболее наглядное представление о последовательности взаимодействия функциональных частей в изделии.
На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.
1.4. На схеме должны быть указаны наименования каждой функциональной части изделия, если для ее обозначения применен прямоугольник.
На схеме допускается указывать тип элемента (устройства) и (или) обозначение документа (основной конструкторский документ, государственный стандарт, технические условия), на основании которого этот элемент (устройство) применен.
При изображении функциональных частей в виде прямоугольников наименования, типы и обозначения рекомендуется вписывать внутрь прямоугольников.
1.5. При большом количестве функциональных частей допускается взамен наименований, типов и обозначений проставлять порядковые номера справа от изображения или над ним, как правило, сверху вниз в направлении слева направо. В этом случае наименования, типы и обозначения указывают в таблице, помещаемой на поле схемы.
1.6. Допускается помещать на схеме поясняющие надписи, диаграммы или таблицы, определяющие последовательность процессов во времени, а также указывать параметры в характерных точках (величины токов, напряжений, формы и величины импульсов, математические зависимости и т. п.).

2. ПРАВИЛА ВЫПОЛНЕНИЯ ФУНКЦИОНАЛЬНЫХ СХЕМ
2.1. На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемой схемой, и связи между этими частями.
2.2. Функциональные части и связи между ними на схеме изображают в виде условных графических обозначений, установленных в стандартах Единой системы конструкторской документации. Отдельные функциональные части допускается изображать в виде прямоугольников.
2.3. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.
2.4. Допускается при выполнении функциональной схемы пользоваться положениями, указанными в пп. 3.6—3.15 и 3.24.
2.5. На схеме должны быть указаны
для каждой функциональной группы — обозначение, присвоенное ей на принципиальной схеме, и (или) ее наименование; если функциональная группа изображена в виде условного графического обозначения, то ее наименование не указывают;
для каждого устройства, изображенного в виде прямоугольника, — позиционное обозначение, присвоенное ему на принципиальной схеме, его наименование и тип и (или) обозначение документа (основной конструкторский документ, государственный стандарт, технические условия), на основании которого это устройство применено;
для каждого устройства, изображенного в виде условного графического обозначения, — позиционное обозначение, присвоенное ему на принципиальной схеме, его тип и (или) обозначение документа;
для каждого элемента — позиционное обозначение, присвоенное ему на принципиальной схеме, и (или) его тип.
Обозначение документа, на основании которого применено устройство, и тип элемента допускается не указывать.
Наименования, типы и обозначения рекомендуется вписывать в прямоугольники.
2.6. На схеме рекомендуется указывать технические характеристики функциональных частей (рядом с графическими обозначениями или на свободном поле схемы).
2.7. На схеме помещают поясняющие надписи, диаграммы или таблицы, определяющие последовательность процессов во времени, а также указывают параметры в характерных точках (величины токов, напряжений, формы и величины импульсов, математические зависимости и т.д.).

3. ПРАВИЛА ВЫПОЛНЕНИЯ ПРИНЦИПИАЛЬНЫХ СХЕМ
3.1. На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии заданных электрических процессов, все электрические связи между ними, а также электрические элементы (соединители, зажимы и т. п.), которыми заканчиваются входные и выходные цепи.
(Измененная редакция, Изм. № 2).
3.2. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям.
3.3. Схемы выполняют для изделий, находящихся в отключенном положении.
В технически обоснованных случаях допускается отдельные элементы схемы изображать в выбранном рабочем положении с указанием на поле схемы режима, для которого изображены эти элементы.
3.4. Элементы и устройства, условные графические обозначения которых установлены в стандартах Единой системы конструкторской документации, изображают на схеме в виде этих условных графических обозначений.
3.5. Элементы или устройства, используемые в изделии частично, допускается изображать на схеме неполностью, ограничиваясь изображением только используемых частей или элементов. 3.4, 3.5.
(Измененная редакция, Изм. № 3).

3.6. Элементы и устройства изображают на схемах совмещенным или разнесенным способом.
3.7. При совмещенном способе составные части элементов или устройств изображают на схеме в непосредственной близости друг к другу.
3.8. При разнесенном способе составные части элементов и устройств или отдельные элементы устройств изображают на схеме в разных местах таким образом, чтобы отдельные цепи изделия были изображены наиболее наглядно.
Разнесенным способом допускается изображать все и отдельные элементы или устройства.
При выполнении схем рекомендуется пользоваться строчным способом. При этом условные графические обозначения элементов или их составных частей, входящих в одну цепь, изображают последовательно друг за другом по прямой, а отдельные цепи — рядом, образуя параллельные (горизонтальные или вертикальные) строки.
При выполнении схемы строчным способом допускается нумеровать строки арабскими цифрами (черт. 1).

Черт. 1
3.9. При изображении элементов или устройств разнесенным способом допускается на свободном поле схемы помещать условные графические обозначения элементов или устройств, выполненные совмещенным способом. При этом элементы или устройства, используемые в изделии частично, изображают полностью с указанием использованных и неиспользованных частей или элементов (например, все контакты многоконтактного реле).
Выводы (контакты) неиспользованных элементов (частей) изображают короче, чем выводы (контакты) использованных элементов (частей) (черт. 2).

Черт. 2
3.8, 3.9. (Измененная редакция, Изм. № 3).
3.10. Схемы выполняют в многолинейном или однолинейном изображении.
3.11. При многолинейном изображении каждую цепь изображают отдельной линией, а элементы, содержащиеся в этих цепях, — отдельными условными графическими обозначениями (черт. 3а).

а — многолинейное изображение
б — однолинейное изображение

Черт. 3
3.12. При однолинейном изображении цепи, выполняющие идентичные функции, изображают одной линией, а одинаковые элементы этих цепей — одним условным графическим обозначением (черт. 3б).
3.11, 3.12. (Измененная редакция, Изм. № 3).
3.13. При необходимости на схеме обозначают электрические цепи. Эти обозначения должны соответствовать требованиям ГОСТ 2.709 или другим нормативно-техническим документам, действующим в отраслях.
3.14. При изображении на одной схеме различных функциональных цепей допускается различать их толщиной линии. На одной схеме рекомендуется применять не более трех размеров линий по толщине. При необходимости на поле схемы помещают соответствующие пояснения.
3.15. Для упрощения схемы допускается несколько электрически не связанных линий связи сливать в линию групповой связи, но при подходе к контактам (элементам) каждую линию связи изображают отдельной линией.
При слиянии линий связи каждую линию помечают в месте слияния, а при необходимости, и на обоих концах условными обозначениями (цифрами, буквами или сочетанием букв и цифр) или обозначениями, принятыми для электрических цепей (см. п. 3.13).
Обозначения линий проставляют в соответствии с требованиями, приведенными в ГОСТ 2.721.

Черт. 3а
Линии электрической связи, сливаемые в линию групповой связи, как правило, не должны иметь разветвлений, т. е. всякий условный номер должен встречаться на линии групповой связи два раза. При необходимости разветвлений их количество указывают после порядкового номера линии через дробную черту (черт. 3а).
3.16. Каждый элемент и (или) устройство, имеющее самостоятельную принципиальную схему и рассматриваемое как элемент, входящие в изделие и изображенные на схеме, должны иметь обозначение (позиционное обозначение) в соответствии с ГОСТ 2.721.
Устройствам, не имеющим самостоятельных принципиальных схем, и функциональным группам рекомендуется присваивать обозначения в соответствии с ГОСТ 2.710.
3.15, 3.16. (Измененная редакция, Изм. № 2).
3.17. Позиционные обозначения элементам (устройствам) следует присваивать в пределах изделия (установки).
3.18. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы, в пределах группы элементов (устройств), которым на схеме присвоено одинаковое буквенное позиционное обозначение, например, Rl, R2, R3 и т. д., Cl, C2, С3 и т. д.
3.19. Порядковые номера должны быть присвоены в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо.
При необходимости допускается изменять последовательность присвоения порядковых номеров в зависимости от размещения элементов в изделии, направления прохождения сигналов или функциональной последовательности процесса.
При внесении изменений в схему последовательность присвоения порядковых номеров может быть нарушена.
3.20. Позиционные обозначения проставляют на схеме рядом с условными графическими обозначениями элементов и (или) устройств с правой стороны или над ними.
3.21. На схеме изделия, в состав которого входят устройства, не имеющие самостоятельных принципиальных схем, допускается позиционные обозначения элементам присваивать в пределах каждого устройства.
Если в состав изделия входит несколько одинаковых устройств, то позиционные обозначения элементам следует присваивать в пределах этих устройств.
Порядковые номера элементам следует присваивать по правилам, установленным в п. 3.18.
Элементам, не входящим в устройства, позиционные обозначения присваивают, начиная с единицы, по правилам, установленным в пп. 3.17—3.19.
3.22. На схеме изделия, в состав которого входят функциональные группы, позиционные обозначения элементам присваивают по правилам, установленным в пп. 3.17—3.19, при этом вначале присваивают позиционные обозначения элементам, не входящим в функциональные группы, и затем элементам, входящим в функциональные группы.
При наличии в изделии нескольких одинаковых функциональных групп позиционные обозначения элементов, присвоенные в одной из этих групп, следует повторять во всех последующих группах.
Обозначение функциональной группы, присвоенное в соответствии с ГОСТ 2.710, указывают около изображения функциональной группы (сверху или справа).
3.23. При изображении на схеме элемента или устройства разнесенным способом позиционное обозначение элемента или устройства проставляют около каждой составной части (черт. 4).

Совмещенный способ изображения устройства
Разнесенный способ изображения устройства

Черт. 4

Черт. 5
Если поле схемы разбито на зоны или схема выполнена строчным способом, то справа от позиционного обозначения или под позиционным обозначением каждой составной части элемента или устройства допускается указывать в скобках обозначения зон или номера строк, в которых изображены все остальные составные части этого элемента или устройства (черт. 5).
3.21-3.23. (Измененная редакция, Изм. № 2).

3.24. Допускается, если это не усложняет схему, раздельно изображенные части элементов соединять линией механической связи, указывающей на принадлежность их к одному элементу.
В этом случае позиционные обозначения элементов проставляют у одного или у обоих концов линии механической связи.
3.25. При изображении отдельных элементов устройств в разных местах в состав позиционных обозначений этих элементов должно быть включено позиционное обозначение устройства, в которое они входят, например, = А3—С5 — конденсатор С5, входящий в устройство A3.
3.26. При разнесенном способе изображения функциональной группы (при необходимости и при совмещенном способе) в состав позиционных обозначений элементов, входящих в эту группу, должно быть включено обозначение функциональной группы, например, ⊃1; Т1—С5 — конденсатор С5, входящий в функциональную группу Т1.
3.27. При однолинейном изображении около одного условного графического обозначения, заменяющего несколько условных графических обозначений одинаковых элементов или устройств, указывают позиционные обозначения всех этих элементов или устройств.
Если одинаковые элементы или устройства находятся не во всех цепях, изображенных однолинейно, то справа от позиционного обозначения или под ним в квадратных скобках указывают обозначения цепей, в которых находятся эти элементы или устройства (см. черт. 3).
3.28. На принципиальной схеме должны быть однозначно определены все элементы и устройства, входящие в состав изделия и изображенные на схеме.
Данные об элементах должны быть записаны в перечень элементов. При этом связь перечня с условными графическими обозначениями элементов должна осуществляться через позиционные обозначения.
Допускается в отдельных случаях, установленных в государственных или отраслевых стандартах, все сведения об элементах помещать около условных графических обозначений.
3.27, 3.28. (Измененная редакция, Изм. № 3).
3.29-3.33. (Исключены, Изм. № 2).
3.34. При сложном вхождении, например, когда в устройство, не имеющее самостоятельной принципиальной схемы, входит одно или несколько устройств, имеющих самостоятельные принципиальные схемы, и (или) функциональных групп, или если в функциональную группу входит одно или несколько устройств и т. д., то в перечне элементов в графе «Наименование» перед наименованием устройств, не имеющих самостоятельных принципиальных схем, и функциональных групп допускается проставлять порядковые номера (т. е. подобно обозначению разделов, подразделов и т. д.) в пределах всей схемы изделия (черт. 9а). Если на схеме в позиционное обозначение элемента включено позиционное обозначение устройства, или обозначение функциональной группы, то в перечне элементов в графе «Поз. обозначение» указывают позиционное обозначение элемента без позиционного обозначения устройства или обозначения функциональной группы.
(Измененная редакция, Изм. № 2).
3.35. (Исключен, Изм. № 2).
3.36. При указании около условных графических обозначений номиналов резисторов и конденсаторов (черт. 11) допускается применять упрощенный способ обозначения единиц измерений
для резисторов
от 0 до 999 Ом — без указания единиц измерения,
от 1·103 до 999·103 Ом — в килоомах с обозначением единицы измерения строчной буквой к,
от 1·106 до 999·106 Ом — в мегаомах с обозначением единицы измерения прописной буквой М,
свыше 1·109 Ом — в гигаомах с обозначением единицы измерения прописной буквой Г;
для конденсаторов
от 0 до 9999·12-12 Ф — в пикофарадах без указания единицы измерения,
от 1·10-8 до 9999·10-6 Ф — в микрофарадах с обозначением единицы измерения строчными буквами мк.
3.37. На схеме следует указывать обозначения выводов (контактов) элементов (устройств), нанесенные на изделие или установленные в их документации.
Если в конструкции элемента (устройства) и в его документации обозначения выводов (контактов) не указаны, то допускается условно присваивать им обозначения на схеме, повторяя их в дальнейшем в соответствующих конструкторских документах.
При условном присвоении обозначений выводам (контактам) на поле схемы помещают соответствующее пояснение.
При изображении на схеме нескольких одинаковых элементов (устройств) обозначения выводов (контактов) допускается указывать на одном из них.
При разнесенном способе изображения одинаковых элементов (устройств) обозначения выводов (контактов) указывают на каждой составной части элемента (устройства).
Для отличия на схеме обозначений выводов (контактов) от других обозначений (обозначений цепей и т. п.) допускается записывать обозначения выводов (контактов) с квалифицирующим символом в соответствии с требованиями ГОСТ 2.710.
3.38. При изображении элемента или устройства разнесенным способом поясняющую надпись помещают около одной составной части изделия или на поле схемы около изображения элемента или устройства, выполненного совмещенным способом.
(Измененная редакция, Изм. № 2, 3).

Черт. 11*
_________
* Черт. 10. (Исключен, Изм. № 2).
3.39. На схеме рекомендуется указывать характеристики входных и выходных цепей изделия (частоту, напряжение, силу тока, сопротивление, индуктивность и т. п.), а также параметры, подлежащие измерению на контрольных контактах, гнездах и т. п.
Если невозможно указать характеристики или параметры входных и выходных цепей изделия, то рекомендуется указывать наименование цепей или контролируемых величин.
(Измененная редакция, Изм. № 2).
3.40. Если изделие заведомо предназначено для работы только в определенном изделии (установке), то на схеме допускается указывать адреса внешних соединений входных и выходных цепей данного изделия. Адрес должен обеспечивать однозначность присоединения, например, если выходной контакт изделия должен быть соединен с пятым контактом третьего соединителя устройства А, то адрес должен быть записан следующим образом = А — Х3 5.

Черт. 12 Черт. 13
Допускается указывать адрес в общем виде, если будет обеспечена однозначность присоединения, например, «Прибор А».
3.41. Характеристики входных и выходных цепей изделия, а также адреса их внешних подключений рекомендуется записывать в таблицы, помещаемые взамен условных графических обозначений входных и выходных элементов — соединителей, плат и т. д. (черт. 12).
Каждой таблице присваивают позиционное обозначение элемента, взамен условного графического обозначения которого она помещена.
Над таблицей допускается указывать условное графическое обозначение контакта — гнезда или штыря.
Таблицы допускается выполнять разнесенным способом.
Порядок расположения контактов в таблице определяется удобством построения схемы.
Допускается помещать таблицы с характеристиками цепей при наличии на схеме условных графических обозначений входных и выходных элементов — соединителей, плат и т. д. (черт. 13).
Аналогичные таблицы рекомендуется помещать на линиях, изображающих входные и выходные цепи и не заканчивающихся на схеме соединителями, платами и т. д. В этом случае позиционные обозначения таблицам не присваивают.
Примечания
1. При наличии на схеме нескольких таблиц допускается головку таблицы приводить только в одной из них.
2. При отсутствии характеристик входных и выходных цепей или адресов их внешнего присоединения в таблице не приводят графу с этими данными.
При необходимости допускается вводить в таблицу дополнительные графы.
3. Допускается проставлять в графе «Конт.» несколько последовательных номеров контактов в случае, если они соединены между собой. Номера контактов отделяют друг от друга запятой.
3.42. При изображении на схеме многоконтактных соединителей допускается применять условные графические обозначения, не показывающие отдельные контакты (ГОСТ 2.755).
Сведения о соединении контактов соединителей указывают одним из следующих способов
— около изображения соединителей, на свободном поле схемы или на последующих листах схемы помещают таблицы, в которых указывают адрес соединения [обозначение цепи (черт. 14а) и (или) позиционное обозначение элементов, присоединяемых к данному контакту (черт. 14б)].
При необходимости в таблице указывают характеристики цепей и адреса внешних соединений (черт. 14а).
Если таблицы помещены на поле схемы или на последующих листах, то им присваивают позиционные обозначения соединителей, к которым они составлены.

а — таблица, помещаемая на свободном поле схемы или на последующих листах схемы
б — таблица, помещаемая около изображения соединителя

Черт. 14

В графах таблиц указывают следующие данные
в графе «Конт.» — номер контакта соединителя. Номера контактов записывают в порядке возрастания;
в графе «Адрес» — обозначение цепи и (или) позиционное обозначение элементов, соединенных с контактами;
в графе «Цепь» — характеристику цепи;
в графе «Адрес внешний» — адрес внешнего соединения;
— соединения с контактами соединителя изображают разнесенным способом (черт. 15).

Черт. 15
Примечания
1. Точки, соединенные штриховой линией с соединителем, обозначают соединения с соответствующими контактами этого соединителя.
2. При необходимости характеристики цепей помещают на свободном поле схемы над продолжением линий связи.
(Измененная редакция, Изм. № 2, 3).
3.43. При изображении на схеме элементов, параметры которых подбирают при регулировании, около позиционных обозначений этих элементов на схеме и в перечне элементов проставляют звездочки (например R1*), а на поле схемы помещают сноску «* Подбирают при регулировании».
В перечень должны быть записаны элементы, параметры которых наиболее близки к расчетным.
Допускаемые при подборе предельные значения параметров элементов указывают в перечне в графе «Примечание».
Если подбираемый при регулировании параметр обеспечивается элементами различных типов, то эти элементы перечисляют в технических требованиях на поле схемы, а в графах перечня элементов указывают следующие данные
в графе «Наименование» — наименование элемента и параметр наиболее близкий к расчетному;
в графе «Примечание» — ссылку на соответствующий пункт технических требований и допускаемые при подборе предельные значения параметров.
3.44, 3.45. (Исключены, Изм. № 2).
3.46. Если параллельное или последовательное соединение осуществлено для получения определенного значения параметра (емкости или сопротивления определенной величины), то в перечне элементов в графе «Примечания» указывают общий (суммарный) параметр элементов (например R = 151 кОм).
3.47. (Исключен, Изм. № 2).
3.48. При изображении устройства (или устройств) в виде прямоугольника допускается в прямоугольнике взамен условных графических обозначений входных и выходных элементов помещать таблицы с характеристиками входных и выходных цепей (черт. 18), а вне прямоугольника допускается помещать таблицы с указанием адресов внешних присоединений (черт. 19).
При необходимости допускается вводить в таблицы дополнительные графы.

Черт. 18*
___________
* Черт. 16, 17. (Исключены, Изм. № 2).

Черт. 19
Каждой таблице присваивают позиционное обозначение элемента, взамен условного графического обозначения которого она помещена.
В таблице взамен слова «Конт.» допускается помещать условное графическое обозначение контакта соединителя (см. черт. 19);
— на схеме изделия в прямоугольники, изображающие устройства, допускается помещать структурные или функциональные схемы устройств, либо полностью или частично повторять их принципиальные схемы.
Элементы этих устройств в перечень элементов не записывают.
Если в изделие входит несколько одинаковых устройств, то схему устройства рекомендуется помещать на свободном поле схемы изделия (а не в прямоугольнике) с соответствующей надписью, например «Схема блоков А1—А4».
(Измененная редакция, Изм. № 2).
3.49-3.51. (Исключены, Изм. № 2).
3.52. На поле схемы допускается помещать указания о марках, сечениях и расцветках проводов и кабелей (многожильных проводов, электрических шнуров), которыми должны быть выполнены соединения элементов, а также указания о специфических требованиях к электрическому монтажу данного изделия.
(Измененная редакция, Изм. № 2).

4. ПРАВИЛА ВЫПОЛНЕНИЯ СХЕМ СОЕДИНЕНИЙ
4.1. На схеме соединений должны быть изображены все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т. п.), а также соединения между этими устройствами и элементами.
4.2. Устройства и элементы на схеме изображают
устройства — в виде прямоугольников или упрощенных внешних очертаний;
элементы — в виде условных графических обозначений, прямоугольников или упрощенных внешних очертаний.
При изображении элементов в виде прямоугольников или упрощенных внешних очертаний допускается внутри их помещать условные графические обозначения элементов.
Входные и выходные элементы изображают в виде условных графических обозначений.
Допускается входные и выходные элементы изображать по правилам, установленным в пп. 3.41, 3.42 и 3.48.
4.1, 4.2. (Измененная редакция, Изм. № 2).
4.3. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.
Допускается на схеме не отражать расположение устройств и элементов в изделии, если схему выполняют на нескольких листах или размещение устройств и элементов на месте эксплуатации неизвестно.
4.4. Элементы, используемые в изделии частично, допускается изображать на схеме неполностью, ограничиваясь изображением только используемых частей.
4.5. На схеме около графических обозначений устройств и элементов указывают позиционные обозначения, присвоенные им на принципиальной схеме.
Около или внутри графического обозначения устройства допускается указывать его наименование и тип и (или) обозначение документа, на основании которого устройство применено.
(Измененная редакция, Изм. № 2).
4.6. (Исключен, Изм. № 2).
4.7. На схеме следует указывать обозначения выводов (контактов) элементов (устройств), нанесенные на изделие или установленные в их документации.
Если в конструкции устройства или элемента и в его документации обозначения входных и выходных элементов (выводов) не указаны, то допускается условно присваивать им обозначения на схеме, повторяя их в дальнейшем в соответствующих конструкторских документах.
При условном присвоении обозначений входным и выходным элементам (выводам) на поле схемы помещают соответствующее пояснение.
При изображении на схеме нескольких одинаковых устройств обозначения выводов допускается указывать на одном из них (например, цоколевку электровакуумных приборов).
4.8. Устройства и элементы с одинаковыми внешними подключениями допускается изображать на схеме с указанием подключения только для одного устройства или элемента.
4.9. Устройства, имеющие самостоятельные схемы подключения, допускается изображать на схеме изделия без показа присоединения проводов и жил кабелей (многожильных проводов, электрических шнуров) к входным и выходным элементам.
(Измененная редакция, Изм. № 2).
4.10. При изображении на схеме соединителей допускается применять условные графические обозначения, не показывающие отдельные контакты (ГОСТ 2.755).
В этом случае около изображения соединителя, на поле схемы или на последующих листах схемы помещают таблицы с указанием подключения контактов (черт. 20).
При размещении таблиц на поле схемы или на последующих листах им присваивают позиционные обозначения соединителей, в дополнение к которым они составлены.
Допускается в таблицу вводить дополнительные графы (например, данные провода).
Если жгут (кабель — многожильный провод, электрический шнур, группа проводов) соединяет одноименные контакты соединителей, то допускается таблицу помещать около одного конца изображения жгута (кабеля — многожильного провода, электрического шнура, группы проводов).
Если сведения о подключении контактов приведены в таблице соединений, то таблицы с указанием подключения контактов на схеме допускается не помещать.
(Измененная редакция, Изм. № 2, 3).

Черт. 20
4.11. На схеме изделия внутри прямоугольников или упрощенных внешних очертаний, изображающих устройства, допускается изображать их структурные, функциональные или принципиальные схемы.
4.12. При отсутствии принципиальной схемы изделия на схеме соединений присваивают позиционные обозначения устройствам, а также элементам, не вошедшим в принципиальные схемы составных частей изделия, по правилам, установленным в пп. 3.16—3.20, и записывают их в перечень элементов.
4.11, 4.12. (Измененная редакция, Изм. № 2).
4.13. На схеме соединений изделия допускается показывать внешние подключения изделия по правилам, установленным в пп. 5.8, 5.9.
4.14. Провода, группы проводов, жгуты и кабели (многожильные провода, электрические шнуры) должны быть показаны на схеме отдельными линиями. Толщина линий, изображающих провода, жгуты и кабели (многожильные провода, электрические шнуры) на схемах, должна быть от 0,4 до 1 мм.
Для упрощения начертания схемы допускается сливать отдельные провода или кабели (многожильные провода, электрические шнуры), идущие на схеме в одном направлении, в общую линию.
При подходе к контактам каждый провод и жилу кабеля (многожильного провода, электрического шнура) изображают отдельной линией.
Допускается линии, изображающие провода, группы проводов, жгуты и кабели (многожильные провода, электрические шнуры), не проводить или обрывать их около мест присоединения, если их изображение затрудняет чтение схемы.
В этих случаях на схеме около мест присоединения (черт. 21) или в таблице на свободном поле схемы (черт. 22) помещают сведения в объеме, достаточном для обеспечения однозначного соединения.

Черт. 21 Черт. 22
(Измененная редакция, Изм. № 2, 3).
4.15. На схеме изделия, в состав которого входят многоконтактные элементы, линии, изображающие жгуты (кабели — многожильные провода, электрические шнуры, группы проводов), допускается доводить только до контура графического обозначения элемента, не показывая присоединения к контактам.
Указания о присоединении проводов или жил кабеля (многожильного провода, электрического шнура) к контактам приводят в этом случае одним из следующих способов
у контактов показывают концы линий, изображающих провода или жилы кабеля (многожильного провода, электрического шнура), и указывают их обозначения. Концы линий направляют в сторону соответствующего жгута, кабеля (многожильного провода, электрического шнура), группы проводов (черт. 23);
у изображения многоконтактного элемента помещают таблицу с указанием подключения контактов. Таблицу соединяют линией-выноской с соответствующим жгутом, кабелем, (многожильным проводом, электрическим шнуром) группой проводов (черт. 24).
4.16. Вводные элементы, через которые проходят провода (группа проводов, жгуты, кабели — многожильные провода, электрические шнуры), изображают в виде условных графических обозначений, установленных в стандартах Единой системы конструкторской документации.
Проходные изоляторы, гермовводы, сальники изображают в виде условных графических обозначений, приведенных на черт. 25.
4.15, 4.16. (Измененная редакция, Изм. № 2).

Черт. 23

Черт. 24

Изолятор проходной
Гермоввод
Сальник

a — линия, изображающая провод (группу проводов, жгут, кабель — многожильный провод, электрический шнур)
Черт. 25
4.17. На схеме следует указывать обозначения вводных элементов, нанесенные на изделие.
Если обозначения вводных элементов не указаны в конструкции изделия, то допускается условно присваивать им обозначения на схеме соединений, повторяя их в соответствующей конструкторской документации. При этом на поле схемы помещают необходимые пояснения.
4.18. Одножильные провода, жгуты, кабели (многожильные провода, электрические шнуры) должны быть обозначены порядковыми номерами в пределах изделия.
Провода, жгуты, кабели (многожильные провода, электрические шнуры) следует нумеровать отдельно. При этом провода, входящие в жгут, нумеруют в пределах жгута, а жилы кабеля (многожильного провода, электрического шнура) — в пределах кабеля (многожильного провода, электрического шнура).
Примечания
1. Допускается сквозная нумерация всех проводов и жил кабелей (многожильных проводов, электрических шнуров) в пределах изделия.
2. Допускается сквозная нумерация отдельных проводов, жгутов и кабелей (многожильных проводов, электрических шнуров) в пределах изделия. При этом провода, входящие в жгут, нумеруют в пределах жгута, а жилы кабеля (многожильного провода, электрического шнура) — в пределах кабеля (многожильного провода, электрического шнура).
3. Допускается не обозначать жгуты, êабели (многожильные провода, электрические шнуры) и отдельные провода, если изделие, на которое составляют схему, войдет в комплекс и обозначения жгутам, кабелям (многожильным проводам, электрическим шнурам) и проводам будут присвоены в пределах всего комплекса.
4. Допускается присваивать обозначения группам проводов.
4.19. Если на принципиальной схеме электрическим цепям присвоены обозначения в соответствии с ГОСТ 2.709, то всем одножильным проводам, жилам кабелей (многожильных проводов, электрических шнуров) и проводам жгутов присваивают те же обозначения. При этом жгуты и кабели (многожильные провода, электрические шнуры) обозначают в соответствии с требованиями п. 4.18.
4.20. На схеме при помощи буквенного (буквенно-цифрового) обозначения допускается определять функциональную принадлежность провода, жгута или кабеля (многожильного провода, электрического шнура) к определенному комплексу, помещению или функциональной цепи.
Буквенное (буквенно-цифровое) обозначение проставляют перед обозначением каждого провода, жгута, кабеля (многожильного провода, электрического шнура), отделяя его знаком дефиса. В этом случае буквенное (буквенно-цифровое) обозначение входит в состав обозначения каждого провода, жгута и кабеля (многожильного провода, электрического шнура).
Дефис в обозначении допускается не проставлять, если это не внесет неясность в чтение схемы.
Если все провода, жгуты, кабели (многожильные провода, электрические шнуры), изображенные на схеме, принадлежат к одному комплексу, помещению или функциональной цепи, то буквенное (буквенно-цифровое) обозначение не проставляют, а на поле схемы помещают соответствующее пояснение.
4.21. Номера проводов и жил кабелей (многожильных проводов, электрических шнуров) на схеме проставляют, как правило, около обоих концов изображений.
Номера кабелей (многожильных проводов, электрических шнуров) проставляют в окружностях, помещенных в разрывах изображений кабелей (многожильных проводов, электрических шнуров) вблизи от мест разветвления жил.
Номера жгутов проставляют на полках линий-выносок около мест разветвления проводов.
Номера групп проводов проставляют около линий-выносок.
Примечания
1. При обозначении кабелей (многожильных проводов, электрических шнуров) в соответствии с требованиями п. 4.20, а также при большом количестве кабелей (многожильных проводов, электрических шнуров), идущих на схеме в одном направлении, допускается номера кабелей (многожильных проводов, электрических шнуров) проставлять в разрыве линии без окружности.
2. При изображении на схеме проводов, жгутов и кабелей (многожильных проводов, электрических шнуров) большой длины номера проставляют через промежутки, определяемые удобством пользования схемой.
4.22. На схеме должны быть указаны
для одножильных проводов — марка, сечение и, при необходимости, расцветка;
для кабелей (многожильных проводов, электрических шнуров), записываемых в спецификацию как материал, — марка, количество и сечение жил и, при необходимости, количество занятых жил. Количество занятых жил указывают в прямоугольнике, помещаемом справа от обозначения данных кабеля (многожильного провода, электрического шнура);
для жгутов, кабелей и проводов, изготовляемых по чертежам, — обозначение основного конструкторского документа.
На схеме приводят характеристики входных и выходных цепей устройств и элементов или другие исходные данные, необходимые для выбора конкретных проводов и кабелей (многожильных проводов, электрических шнуров), если при разработке схемы комплекса данные о проводах и кабелях (многожильных проводах, электрических шнурах) не могут быть определены.
Характеристики входных и выходных цепей рекомендуется указывать в виде таблиц (п. 3.41), помещаемых взамен условных графических обозначений входных и выходных элементов.
4.23. Данные (марку, сечение и др.) о проводах и кабелях (многожильных проводах, электрических шнурах) указывают около линий, изображающих провода и кабели (многожильные провода, электрические шнуры).
В этом случае допускается обозначения проводам и кабелям (многожильным проводам, электрическим шнурам) не присваивать.
При указании данных о проводах и кабелях (многожильных проводах, электрических шнурах) в виде условных обозначений эти обозначения расшифровывают на поле схемы.
Одинаковые марку, сечение и другие данные о всех или большинстве проводов и кабелей (многожильных проводов, электрических шнуров) допускается указывать на поле схемы.
4.24. Если на схеме не указаны места присоединений (например, не показаны отдельные контакты в изображении соединителей) или затруднено отыскание мест присоединения проводов и жил кабеля (многожильного провода, электрического шнура), то данные о проводах, жгутах и кабелях (многожильных проводов, электрических шнуров) и адреса их соединений сводят в таблицу, именуемую «Таблицей соединений».
Таблицу соединений следует помещать на первом листе схемы или выполнять в виде самостоятельного документа.
Таблицу соединений, помещаемую на первом листе схемы, располагают, как правило, над основной надписью. Расстояние между таблицей и основной надписью должно быть не менее 12 мм.
Продолжение таблицы соединений помещают слева от основной надписи, повторяя головку таблицы.
Таблицу соединений в виде самостоятельного документа выполняют на формате А4. Основную надпись и дополнительные графы к ней выполняют по ГОСТ 2.104 (форма 2 и 2а).
4.25. Форму таблицы соединений выбирает разработчик схемы в зависимости от сведений, которые необходимо поместить на схеме (черт. 26).
В графах таблиц указывают следующие данные
в графе «Обозначение провода» — обозначение одножильного провода, жилы кабеля (многожильного провода, электрического шнура) или провода жгута;
в графах «Откуда идет», «Куда поступает» — условные буквенно-цифровые обозначения соединяемых элементов или устройств;
в графе «Соединения» — условные буквенно-цифровые обозначения соединяемых элементов или устройств, разделяя их запятой;
в графе «Данные провода»
для одножильного провода — марку, сечение и, при необходимости, расцветку в соответствии с документом, на основании которого его применяют;
для кабеля (многожильного провода, электрического шнура), записываемого в спецификацию как материал, — марку, сечение и количество жил в соответствии с документом, на основании которого применяют кабель (многожильный провод, электрический шнур);
в графе «Примечание» — дополнительные уточняющие данные.
Примечания
1. Размеры граф рекомендуемые.
2. Допускается графы делить на подграфы.
4.26. При заполнении таблицы соединений следует придерживаться следующего порядка
при выполнении соединений отдельными проводами в таблицу записывают провода в порядке возрастания номеров, присвоенных им;

Черт. 26
при выполнении соединений проводами жгутов или жилами кабелей (многожильных проводов, электрических шнуров) перед записью проводов каждого жгута или жил каждого кабеля (многожильного провода, электрического шнура) помещают заголовок, например «Жгут 1» или «Жгут АБВГ.ХХХХХХ.032»; «Кабель 3» или «Кабель АБВГ.ХХХХХХ.042»; «Провод 5». Провода жгута или жилы кабеля (многожильного провода, электрического шнура) записывают в порядке возрастания номеров, присвоенных проводам или жилам;
при выполнении соединений отдельными проводами, жгутами проводов и кабелями (многожильные провода, электрические шнуры) в таблицу соединений вначале записывают отдельные провода (без заголовка), а затем (с соответствующими заголовками) жгуты проводов и кабели (многожильные провода, электрические шнуры);
если на отдельные провода должны быть надеты изоляционные трубки, экранирующие оплетки и т. п., то в графе «Примечание» помещают соответствующие указания. Допускается эти указания помещать на поле схемы.
Примечание. При применении схемы соединений только для электромонтажа допускается другой порядок записи, если он установлен в отраслевых стандартах.
4.27. На схеме соединений около обоих концов линий, изображающих отдельные провода, провода жгутов и жилы кабелей (многожильных проводов, электрических шнуров) допускается указывать адрес соединений. В этом случае таблицу соединений не составляют. Обозначения проводам допускается не присваивать.
4.28. На поле схемы над основной надписью допускается помещать необходимые технические указания, например требования о недопустимости совместной прокладки некоторых проводов, жгутов и кабелей (многожильных проводов, электрических шнуров);
величины минимально допустимых расстояний между проводами, жгутами и кабелями (многожильными проводами, электрическими шнурами); данные о специфичности прокладки и защиты проводов, жгутов и кабелей (многожильных проводов, электрических шнуров) и т. п.
4.18-4.28. (Измененная редакция, Изм. № 2).

5. ПРАВИЛА ВЫПОЛНЕНИЯ СХЕМ ПОДКЛЮЧЕНИЯ
5.1. На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т. п.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия [характеристики внешних цепей и (или) адреса].
5.2. Изделие на схеме изображают в виде прямоугольника, а его входные и выходные элементы — в виде условных графических обозначений.
Допускается изображать изделие в виде упрощенных внешних очертаний. Входные и выходные элементы изображают в этом случае в виде упрощенных внешних очертаний.
5.1, 5.2. (Измененная редакция, Изм. № 2).
5.3. Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии.
5.4. На схеме должны быть указаны позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.
5.5. Вводные элементы (например, сальники, гермовводы, проходные изоляторы), через которые проходят провода или кабели (многожильные провода, электрические шнуры), изображают на схеме по правилам, установленным в п. 4.16.
(Измененная редакция, Изм. № 2).
5.6. На схеме следует указывать обозначения входных, выходных или выводных элементов, нанесенные на изделие.
Если обозначения входных, выходных и выводных элементов в конструкции изделия не указаны, то допускается условно присваивать им обозначения на схеме, повторяя их в соответствующей конструкторской документации. При этом на поле схемы помещают необходимые пояснения.
5.7. На схеме около условных графических обозначений соединителей, к которым присоединены провода и кабели (многожильные провода, электрические шнуры), допускается указывать наименования этих соединителей и (или) обозначения документов, на основании которых они применены.
5.8. Провода и кабели (многожильные провода, электрические шнуры) должны быть показаны на схеме отдельными линиями.
5.9. При необходимости на схеме указывают марки, сечения, расцветку проводов, а также марки кабелей (многожильных проводов, электрических шнуров), количество, сечение и занятость жил.
При указании марок, сечений и расцветки проводов в виде условных обозначений на поле схемы расшифровывают эти обозначения.
5.7-5.9. (Измененная редакция, Изм. № 2).

6. ПРАВИЛА ВЫПОЛНЕНИЯ ОБЩИХ СХЕМ
6.1. На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы.
6.2. Устройства и элементы на схеме изображают в виде прямоугольников. Допускается элементы изображать в виде условных графических обозначений или упрощенных внешних очертаний, а устройства — в виде упрощенных внешних очертаний.
Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.
Допускается на схеме не отражать расположение устройств и элементов в изделии, если размещение их на месте эксплуатации неизвестно.
В этих случаях графические обозначения устройств и элементов должны быть расположены так, чтобы обеспечивалась простота и наглядность показа электрических соединений между ними.
6.1, 6.2. (Измененная редакция, Изм. № 2).
6.3. На графических обозначениях устройств и элементов входные, выходные и вводные элементы изображают по правилам, установленным в пп. 4.10, 4.16.
Расположение условных графических обозначений входных, выходных и вводных элементов внутри изображений устройств и элементов должно примерно соответствовать их действительному размещению в изделии. Если для обеспечения наглядности показа соединений расположение графических обозначений этих элементов не соответствует их действительному размещению в изделии, то на поле схемы должно быть помещено соответствующее пояснение.
6.4. На схеме должны быть указаны
для каждого устройства или элемента, изображенных в виде прямоугольника или упрощенного внешнего очертания, — их наименование и тип и (или) обозначение документа, на основании которого они применены;
для каждого элемента, изображенного в виде условного графического обозначения, — его тип и (или) обозначение документа.
При большом количестве устройств и элементов рекомендуется эти сведения записывать в перечень элементов.
В этом случае около графических обозначений устройств и элементов проставляют позиционные обозначения.
(Измененная редакция, Изм. № 2).
6.5. Устройства и элементы, сгруппированные в посты и (или) помещения, рекомендуется записывать в перечень по постам и (или) помещениям.
6.6. На схеме следует указывать обозначения входных, выходных и вводных элементов, нанесенные на изделие.
Если обозначения входных, выходных и вводных элементов в конструкции изделия не указаны, то допускается этим элементам условно присваивать обозначения на схеме, повторяя их в соответствующей конструкторской документации. При этом на поле схемы помещают необходимые пояснения.
6.7. На схеме допускается указывать обозначения документов соединителей на полках линий-выносок, а также число контактов соединителей, используя при этом их следующее условное графическое обозначение (черт. 27).
(Измененная редакция, Изм. № 3).
6.8. Провода, жгуты и кабели (многожильные провода, электрические шнуры) должны быть показаны на схеме отдельными линиями и обозначены отдельно порядковыми номерами в пределах изделия.

Черт. 27
Допускается сквозная нумерация проводов, жгутов и кабелей (многожильных проводов, электрических шнуров) в пределах изделия, если провода, входящие в жгуты, пронумерованы в пределах каждого жгута.
Если на принципиальной схеме электрическим цепям присвоены обозначения в соответствии с ГОСТ 2.709—72, то всем одножильным проводам, жилам кабелей (многожильных проводов, электрических шнуров) и проводам жгутов присваивают те же обозначения.
6.9. Если в состав изделия, на которое разрабатывают схему, входит несколько комплексов, то одножильные провода, кабели (многожильные провода, электрические шнуры) и жгуты следует нумеровать в пределах каждого комплекса.
Принадлежность одножильного провода, жгута, кабеля (многожильного провода, электрического шнура) к определенному комплексу определяют при помощи буквенного (буквенно-цифрового) обозначения, проставляемого перед номером каждого одножильного провода, жгута и кабеля (многожильного провода, электрического шнура) и отделяемого знаком дефис.
6.10. Допускается на схеме при помощи буквенного (буквенно-цифрового) обозначения определять принадлежность провода, жгута или кабеля (многожильного провода, электрического шнура) к определенным помещениям или функциональным цепям по правилам, установленным в п. 4.20.
6.11. Номера одножильных проводов на схеме проставляют около концов изображений; номера одножильных коротких проводов, которые отчетливо видны на схеме, допускается помещать около середины изображений.
6.12. Номера кабелей (многожильных проводов, электрических шнуров) проставляются в окружностях, помещаемых в разрывах изображений кабелей (многожильных проводов, электрических шнуров).
Примечание. При обозначении кабелей (многожильных проводов, электрических шнуров) в соответствии с требованиями пп. 6.9, 6.10, обозначения в окружность не вписывают.
6.8—6.12. (Измененная редакция, Изм. № 2).
6.13. Номера жгутов проставляют на полках линий-выносок.
6.14. На схеме около изображения одножильных проводов, жгутов и кабелей (многожильных проводов, электрических шнуров) указывают следующие данные
для одножильных проводов — марку, сечение и, при необходимости, расцветку;
для кабелей (многожильных проводов, электрических шнуров), записываемых в спецификацию как материал, — марку, количество и сечение жил;
для проводов, кабелей и жгутов, изготовленных по чертежам, — обозначение основного конструкторского документа.
Если при разработке схемы данные о проводах и кабелях (многожильных проводах, электрических шнурах), прокладываемых при монтаже, не могут быть определены, то на схеме приводят соответствующие пояснения с указанием исходных данных, необходимых для выбора конкретных проводов и кабелей (многожильных проводов, электрических шнуров).
При большом количестве соединений рекомендуется указанные сведения записывать в перечень проводов, жгутов и кабелей (многожильных проводов, электрических шнуров).
6.15. Перечень проводов, жгутов и кабелей (многожильных проводов, электрических шнуров) (черт. 28) помещают на первом листе схемы, как правило, над основной надписью или выполняют в виде последующих листов.

Черт. 28
В графах перечня указывают следующие данные
в графе «Обозначение» — обозначение основного конструкторского документа провода, кабеля (многожильного провода, электрического шнура), жгута, изготовленных по чертежам;
в графе «Примечание» — кабели (многожильные провода, электрические шнуры), поставляемые с комплексом или прокладываемые при его монтаже;
кабели (многожильные провода, электрические шнуры), прокладываемые при монтаже, допускается в перечень не вносить.
6.14, 6.15. (Измененная редакция, Изм. № 2).
6.16. Общую схему, по возможности, следует выполнять на одном листе. Если схема из-за сложности изделия не может быть выполнена на одном листе, то
на первом листе вычерчивают изделие в целом, изображая посты и (или) помещения условными очертаниями и показывая связи между постами и (или) помещениями.
Внутри условных очертаний постов и (или) помещений изображают только те устройства и элементы, к которым подводят провода и кабели (многожильные провода, электрические шнуры), соединяющие посты и (или) помещения.
На других листах полностью вычерчивают схемы отдельных постов и (или) помещений или групп постов и (или) помещений;
общую схему каждого комплекса выполняют на отдельном листе, если в состав изделия входит несколько комплексов.

(Измененная редакция, Изм., № 2).

7. ПРАВИЛА ВЫПОЛНЕНИЯ СХЕМ РАСПОЛОЖЕНИЯ
7.1. На схеме расположения изображают составные части изделия, а при необходимости связи между ними, конструкцию, помещение или местность, на которых эти составные части будут расположены.
7.2. Составные части изделия изображают в виде упрощенных внешних очертаний или условных графических обозначений.
7.3. Провода, группы проводов, жгуты и кабели (многожильные провода, электрические шнуры) изображают в виде отдельных линий или упрощенных внешних очертаний.
7.2, 7.3. (Измененная редакция, Изм. № 2).
7.4. Расположение графических обозначений составных частей изделия на схеме должно обеспечивать правильное представление об их действительном размещении в конструкции, помещении, на местности.
7.5. При выполнении схемы расположения допускается применять различные способы построения (аксонометрия, план, условная развертка, разрез конструкции и т. п.).
7.6. На схеме должны быть указаны
для каждого устройства или элемента, изображенных в виде упрощенного внешнего очертания, — их наименование и тип и (или) обозначение документа, на основании которого они применены;
для каждого элемента, изображенного в виде условного графического обозначения, — его тип и (или) обозначение документа.
При большом количестве устройств и элементов рекомендуется эти сведения записывать в перечень элементов.
В этом случае около графических обозначений устройств и элементов проставляют позиционные обозначения.
(Измененная редакция, Изм. № 2).
Разд. 8. (Исключен, Изм. № 2).

ПРИЛОЖЕНИЕ
Справочное
Информационные данные о соответствии ГОСТ 2.702—75 СТ СЭВ 1188—78

Номер раздела ГОСТ 2.702—75
Номер раздела СТ СЭВ 1188-78
Номер раздела ГОСТ 2.702—75
Номер раздела СТ СЭВ 1188-78

1
2
5
8

2
3
6
7

3
4
7
9

4
6

(Введено дополнительно, Изм. № 2).

ГОСТ Р 51330.6-99
(МЭК 60079-5-97)
Группа Е02
ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЭЛЕКТРООБОРУДОВАНИЕ ВЗРЫВОЗАЩИЩЕННОЕ
Часть 5
Кварцевое заполнение оболочки q
Electrical apparatus for explosive gas atmospheres.
Part 5. Powder filling q
ОКС 29.260.20
ОКСТУ 3402
Дата введения 2001-01-01
Предисловие
1 РАЗРАБОТАН Негосударственным фондом ”Межотраслевой орган сертификации ”Сертиум” (МОС ”Сертиум”)
ВНЕСЕН Техническим комитетом по стандартизации ТК 403 ”Взрывозащищенное и рудничное электрооборудование”
2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 9 декабря 1999 г. N 497-ст
3 Настоящий стандарт представляет собой аутентичный текст международного стандарта МЭК 60079-5-97 ”Электрооборудование взрывозащищенное. Часть 5. Кварцевое заполнение оболочки q ” с дополнительными требованиями, отражающими потребности экономики страны
4 ВВЕДЕН ВПЕРВЫЕ

ВВЕДЕНИЕ
Настоящий стандарт дополняет ГОСТ Р 51330.0, требования которого применимы к электрооборудованию с взрывозащитой вида ”кварцевое заполнение оболочки”. Дополнительные по отношению к МЭК 60079-5-97 требования, отражающие потребности экономики страны, выделены в настоящем стандарте курсивом.
ГОСТ 22782.2-77 не ограничивал мощность и уровень напряжения взрывозащищенного электрооборудования с кварцевым заполнением оболочки, а его реализация позволяла создавать взрывозащищенное электрооборудование с особовзрывобезопасным и взрывобезопасным уровнями взрывозащиты. Несмотря на это широкого применения взрывозащищенное электрооборудование большой мощности с кварцевым заполнением оболочки не нашло, что было обусловлено необходимостью реализации сложных конструкторских решений, сложностью эксплуатации такого электрооборудования и экономической неэффективностью. Поэтому при разработке настоящего стандарта было принято решение взять за основу концепцию, изложенную в МЭК 60079-5-97, ограничить действие взрывозащиты «кварцевое заполнение оболочки» на электрооборудование, напряжение переменного и постоянного тока которого не превышает 1140 В, ток 16 А, а мощность составляет не более 1000 В·А, а также принять практически без изменений требования и методы испытаний МЭК 60079-5-97, которые в совокупности обеспечивают уровень взрывозащиты электрооборудования ”повышенная надежность против взрыва”.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий стандарт устанавливает требования к конструированию, испытаниям и маркировке взрывозащищенного электрооборудования, составным его частям и Ex-компонентам с взрывозащитой вида ”кварцевое заполнение оболочки”, предназначенным для применения во взрывоопасных средах газа, пара или тумана.
Примечание — Электрооборудование и Ex-компоненты с кварцевым заполнением могут содержать электрические цепи, трансформаторы, защитные предохранители, реле, переключатели, оборудование и т.п., расположенные вне взрывоопасной зоны, но электрически соединенные с электрооборудованием, находящимся во взрывоопасной зоне.
Требования настоящего стандарта распространяются на взрывозащищенное электрооборудование, его составные части и Ex-компоненты
— номинальный ток которых меньше или равен 16 А;
— мощность которых меньше или равна 1000 В·А и напряжение питания переменного или постоянного тока не более 1140 В.
Требования настоящего стандарта являются обязательными.

2 НОРМАТИВНЫЕ ССЫЛКИ
В настоящем стандарте использованы ссылки на следующие стандарты
ГОСТ 14254-96 (МЭК 529-89) Степени защиты, обеспечиваемые оболочками (Код IP)
ГОСТ Р 50339.0-92 (МЭК 261-1-86) Низковольтные плавкие предохранители. Общие требования
ГОСТ Р 50537-93 (МЭК 127-1-88) Миниатюрные плавкие предохранители. Терминология для миниатюрных плавких предохранителей и общие требования к миниатюрным плавким вставкам
ГОСТР 51330.0-99 (МЭК 60079-0-98) Электрооборудование взрывозащищенное. Часть 0. Общие требования

3 ОПРЕДЕЛЕНИЯ
В настоящем стандарте используют следующие термины с соответствующими определениями, которые дополняют определения, приведенные в ГОСТ Р 51330.0.
3.1 кварцевое заполнение оболочки q Вид взрывозащиты, при котором части, способные воспламенить взрывоопасную смесь, фиксируются в определенном положении и полностью окружены заполнителем, предотвращающим воспламенение окружающей взрывоопасной среды.
Примечание — Электрооборудование и Ex-компоненты с кварцевым заполнением оболочки могут содержать электрические цепи, трансформаторы, защитные предохранители, реле, переключатели, оборудование и т.п., расположенные вне взрывоопасной зоны, но электрически соединенные с электрооборудованием, находящимся во взрывоопасной зоне.
3.2 заполнитель Кварцевые или стеклянные частицы.
3.3 максимальное внешнее приложенное напряжение Um Максимальное напряжение переменного тока или максимальное напряжение постоянного тока, предписанное изготовителем, которое может быть приложено к зажимам электрооборудования без нарушения вида взрывозащиты ”кварцевое заполнение”.
3.4 рабочее напряжение Наибольшее значение напряжения постоянного или переменного тока, которое может возникнуть (локально) по любой изоляции при номинальном напряжении питания (колебаниями напряжений можно пренебречь) в нормальных режимах работы или при разомкнутой электрической цепи.
3.5 путь утечки Кратчайшее расстояние между токоведущими частями разного потенциала или между токоведущей и заземленной частью электрооборудования по поверхности изоляционного материала.
3.6 путь утечки под покрытием Кратчайшее расстояние между двумя токоведущими частями по поверхности электроизоляционной среды.
3.7 расстояние через заполняющий материал Кратчайшее расстояние между двумя токоведущими частями через заполняющий материал.
3.8 номинальные значения предохранителя Iн Номинальный ток предохранителя в соответствии с ГОСТ Р 50537 или согласно спецификации изготовителя.

4 КОНСТРУКТИВНЫЕ ТРЕБОВАНИЯ
4.1 Оболочка
4.1.1 Механическая прочность
Оболочки электрооборудования, составных частей электрооборудования и Ex-компонентов с кварцевым заполнением должны соответствовать высокой степени механической прочности согласно требованиям ГОСТ Р 51330.0, а также выдерживать испытания давлением, указанным в 5.1 и 5.2 настоящего стандарта.
Оболочки электрооборудования и Ex-компонентов, предназначенные для установки внутри другой оболочки, удовлетворяющей требованиям ГОСТ Р 51330.0, должны выдерживать только испытание давлением в соответствии с 5.1 и 5.2 настоящего стандарта. Это оборудование должно маркироваться знаком Х согласно ГОСТ Р 51330.0, если оно не относится к Ex-компоненту.
4.1.2 Степень защиты оболочки от внешних воздействий
Оболочки электрооборудования, составных частей оборудования и Ex-компонентов с кварцевым заполнением в нормальных режимах работы (т.е. все отверстия закрыты) должны иметь степень защиты от внешних воздействий не ниже IP54 по ГОСТ 14254. Если степень защиты IP55 или выше, оболочки должны быть снабжены вентиляционными устройствами.
Оболочки с вентиляционными устройствами должны обеспечивать степень защиты от внешних воздействий IP54 по ГОСТ 14254.
Оболочки электрооборудования, составных частей оборудования и Ex-компонентов с кварцевым заполнением, предназначенные для применения только в чистых сухих помещениях, могут иметь степень защиты IP43 по ГОСТ 14254. Маркировка таких оболочек должна иметь знак X.
Если оболочки электрооборудования, составные частей электрооборудования и Ex-компоненты с кварцевым заполнением предназначены для установки внутри другой оболочки, соответствующей требованиям ГОСТ Р 51330.0, то эта наружная оболочка должна иметь степень защиты не ниже IP54. К внутренней оболочке требования по степени защиты не предъявляют.
Максимальный зазор в оболочке должен быть не менее чем на 0,1 мм меньше минимального размера материала заполнителя, но не более 0,9 мм для того, чтобы заполнитель не мог высыпаться.
Подвижные и нормально искрящие части электрооборудования не должны находиться в контакте с заполнителем, а должны быть заключены в самостоятельную оболочку со степенью защиты не ниже IP54 по ГОСТ 14254 и погружены со своей оболочкой в заполнитель.
Смонтированные таким образом части должны быть включены в электрические цепи, не опасные в отношении аварийного дугового разряда. Это требование не относится к размещаемым в заполнителе герметичным вакуумным контактам в собственных оболочках.
4.1.3 Заполнение
Кварцевое заполнение оболочки должно выполняться таким образом, чтобы не оставалось никаких пустот внутри заполняющего материала (например, с помощью принудительной вибрации). Свободное пространство внутри оболочки электрооборудования, составных частей электрооборудования и Ex-компонентов должно быть полностью наполнено заполнителем (см. также 4.3.2).
Токоведущие или находящиеся под напряжением части (в дальнейшем — электрические части) электрооборудования, в том числе общего назначения, встроенного в оболочку с кварцевым заполнением, должны находиться под защитным слоем заполнителя, толщина которого должна быть не менее удвоенного значения соответствующего расстояния заполнителя согласно таблице 1. Для неэлектрических частей слой заполнителя не нормируют.
Заполнение оболочки кварцем должно производиться при принудительной вибрации с частотой от 25 до 50 Гц и амплитудой колебаний (1,0±0,2) мм в течение не менее 5 мин.
Таблица 1 — Расстояния в заполнителе

Напряжение постоянного или переменного тока, В, не более
Расстояния в заполнителе, мм, не менее

U £ 275
5

275 < U £ 420
6

420 < U £ 550
8

550 < U £ 750
10

750 < U £ 1000
14

1000 < U £ 3000
36

3000 < U £ 6000
60

6000 < U £ 10000
100

U — напряжение постоянного или переменного тока.

4.1.4 Средства закрытия
Оболочки электрооборудования, составных частей электрооборудования и Ex-компонентов с кварцевым заполнением должны закрываться изготовителем так, чтобы их открывание было затруднено или приводило к разрушению оболочки или средств закрытия. Заполняющие отверстия должны быть выполнены таким же образом.
Примечание — Приемлемыми средствами являются, например, сварка, пайка, склеивание мест соединений, заклепывание, соединение винтами.
4.1.5 Оболочка должна быть выполнена так, чтобы при снятии крышек или отсоединении сборочных единиц конструкции электрооборудования в его рабочем положении не происходило высыпание заполнителя.
4.1.6 На крышке оболочки с болтовым креплением должно быть не менее двух невыпадающих блокировочных болтов с головками, утопленными впотай (или имеющими охранные кольца), или с опломбированными головками без размещения впотай. В соединениях оболочек электрооборудования группы II выполнение блокировочных болтов невыпадающими не обязательно.
Болтовые соединения оболочки должны быть защищены от самоотвинчивания.
4.2 Заполнитель
4.2.1 Требования к документации
Документация, представленная изготовителем и проверенная испытательной организацией в соответствии с требованиями ГОСТ Р 51300.0 (см. виды проверок документов), должна содержать подробную информацию о заполняющем материале, описание процесса заполнения и средств контроля правильности заполнения.
Описание должно включать
— наименование и адрес изготовителя заполняющего материала;
— точные и полные технические данные заполнителя;
— размеры гранул (см. 4.2.2).
4.2.2 Требования к заполнителю
Размеры гранул не должны превышать следующих размеров сита согласно ИСО 565 [1]
— верхний предел — металлопроволочная ткань или перфорированный металлический лист с номинальными размерами отверстий 1 мм;
— нижний предел — металлопроволочная ткань с номинальными размерами отверстий 0,5 мм. Допускаются только сухой кварцевый песок или твердые стеклянные частички, не содержащие металлических примесей.
Испытательная организация не проводит оценку заполнителя в соответствии с 4.2.1 и 4.2.2.

4.2.3 Требования к испытаниям
Заполнитель должен проходить испытания на пробивное напряжение согласно 5.1 и 5.2.
4.3 Расстояния в заполнителе
4.3.1 За исключением специально указанных в настоящем стандарте случаев, минимальные расстояния в заполняющем материале между двумя токопроводящими частями оборудования и изоляционными компонентами, с одной стороны, и внутренними стенками оболочки, с другой стороны, должны удовлетворять требованиям таблицы 1. Эти требования не распространяются на проводники, применяемые для внешних подсоединений, которые проходят через стенки оболочки. Такие проводники должны удовлетворять требованиям 4.3.3.
Рабочее напряжение и аварийные режимы работы в соответствии с 4.8 должны рассматриваться с учетом максимального значения питающего напряжения.
Примечание — Несмотря на то, что требования настоящего стандарта распространяются на электрооборудование на напряжение не более 1140 В, в таблице 1 указаны напряжения св. 1140 В, которые могут развиваться или генерироваться в электрооборудовании.
4.3.2 Следующие требования действуют в случае, если в электрооборудовании находятся компоненты, которые имеют свободный объем, не наполненный заполнителем (например, реле)
— если свободный объем компонента менее 3 см3, то минимальное расстояние по заполнителю между стенками компонента и внутренней поверхностью оболочки должно удовлетворять требованиям таблицы 1;
— если свободный объем компонента более 3 см3, но менее 30 см3, то минимальное расстояние по заполнителю между стенкой компонента и внутренней поверхностью оболочки должно удовлетворять требованиям таблицы 1, но составлять не менее 15 мм;
— компонент должен быть жестко установлен таким образом, чтобы его перемещение в оболочке не допускалось;
— свободный объем более 30 см3не допускается;
— оболочка компонента должна быть термоустойчивой и механически прочной (в т.ч. в аварийных режимах работы в соответствии с 4.8), т.е. не должно быть никаких ее повреждений или разрушений, которые могли бы привести к снижению защиты, обеспечиваемой заполнителем.
4.3.3 Электрические устройства и компоненты, не удовлетворяющие 4.3.1 или 4.3.2, должны иметь взрывозащиту одного из видов, приведенных в ГОСТ Р 51330.0.
4.4 Применяемые материалы
Материалы, устанавливаемые между токоведущими частями и стенками оболочки (кроме изоляции внешних проводников и заполнителя), в случаях, оговоренных в 4.3, должны удовлетворять требованиям на горючесть, как указано в 5.1.3.
4.5 Вводные устройства
4.5.1 Кабельные вводы и проходные зажимы электрооборудования с кварцевым заполнением оболочки, составных частей электрооборудования и Ex-компонентов не должны ухудшать степень защиты оболочки, предписанную в 4.1.2.
4.5.2 Кабельные вводы и проходные зажимы электрооборудования должны быть защищены и уплотнены, как указано в 4.1.4 настоящего стандарта. Требования ГОСТ Р 51330.0 не распространяются на кабельные вводы и проходные зажимы оболочек, заполненных кварцем и устанавливаемых внутри другой оболочки, отвечающей требованиям 4.1.2 настоящего стандарта.
4.6 Элементы, аккумулирующие электрическую энергию
Энергия всех конденсаторов, установленных в электрооборудовании с кварцевым заполнением оболочки, а также в составных частях электрооборудования и Ex-компонентах, не должна превышать 20 Дж в нормальных режимах работы.
Применение химических источников тока и батарей, которые могут нарушить взрывозащиту данного вида, не допускается.
4.7 Температурные пределы
Электрооборудование, его составные части и Ex-компоненты с кварцевым заполнением оболочки должны быть защищены от таких аварийных повреждений, как короткое замыкание или тепловая перегрузка, таким образом, чтобы допустимые температурные пределы принятого температурного класса не были превышены как на стенке оболочки, так и внутри заполнителя до глубины не менее 5 мм, считая от стенки оболочки.
4.8 Аварийные повреждения
Взрывозащита вида «кварцевое заполнение оболочки» должна сохраняться и в случае перегрузок, оговоренных в стандарте на изделия, и при любом одном электрическом повреждении, которое может вызвать или перенапряжения, или перегрузки по току, например
— короткое замыкание любого компонента;
— разрыв электрической цепи из-за повреждений какого-либо компонента;
— повреждения печатной платы и т.д.
Если внесенное повреждение может вызвать серию повреждений, например перегрузку элементов, то первичное и последующие повреждения считают как одно повреждение.
В случае если стандарт на изделие отсутствует, перегрузки должны быть регламентированы изготовителем.
При рассм