Физика за 9 класс
Билет №1 — Механические и тепловые явления.
Механические явления — это явления, связанные с перемещением макроскопических тел в пространстве. Макроскопические тела — это тела, состоящие из большого количества молекул. Механика изучает силы как причины их изменения скоростей тел, но природа этих сил, их происхождение механикой не объясняются. Явления, связанные с изменением температуры тел, называются тепловыми. При тепловом явлении с телом с точки зрения механики ничего не происходит, но как известно, тело состоит из беспорядочно движущихся частиц. Беспорядочное движение частиц, из которых состоит тело, называют тепловым.
Билет №2 — Основные положения МКТ.
В основе молекулярно-кинетической теории строения вещества лежат три основных положения
а) Все вещества состоят из частиц. б) Частицы находятся в постоянном беспорядочном движении.
в) Эти частицы взаимодействуют друг с другом. Цель МКТ — объяснение свойств макроскопических (состоящих из большого числа молекул) тел и тепловых процессов, протекающих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.
Билет №3 — Явления, подтверждающие МКТ.
а) В комнату внесли открытый флакон духов. Через некоторое время запах распространился по комнате, хотя уровень духов во флаконе не изменился. То есть во всей комнате есть частицы духов, но они настолько малы, что их выход из сосуда не изменяет уровня духов в нём. б) Подтверждение — явление диффузии (взаимного проникновения соприкасающихся веществ друг в друга вследствие беспорядочного движения частиц вещества), явление броуновского движения (тепловое движение взвешенных в жидкости или газе частиц, возникающее вследствие того, что беспорядочно движущиеся молекулы или атомы газа или жидкости передают взвешенной в нём частице разные импульсы с разных сторон). в) Подтверждается явлением смачивания твёрдых тел жидкостями. Если сила притяжения между молекулами жидкости больше, чем между молекулами твёрдого тела (пластилин), то твёрдое тело не смачивается, если же притяжение между молекулами жидкости меньше, чем между молекулами твёрдого тела, то твёрдое тело смочится.
Билет №4 — Размеры, число и масса молекул.
В соответствии с первым положением МКТ все вещества состоят из частиц. Этими частицами могут быть молекулы, атомы или элементарные частицы. Для того, чтобы убедится в их реальности, нужно определить их размеры. Проще всего это сделать, наблюдая растекание масла по поверхности воды. Так как капля масла V=1см3 не может растечься на S>0,6 м2. Исходя из этого, можно предполагать, что толщина этого слоя равна одной молекуле, тогда её диаметр можно найти по формуле d=1, 7*10-7м. Размеры молекулы вещества, в том числе и масла больше размеров атомов (dатома10-10м). Число молекул огромно. Так как число атомов в молекуле воды V=1см3 при m=1г примерно равно N=3,7*1022. Массу молекулы воды можно найти, если поделить массу этой капли на количество молекул в ней m=2,7*10-23г. Молекулы других веществ имеют настолько же малые массы, кроме молекул органических веществ, которые имеют массу в сотни тысяч раз больше, но всё равно очень малые по сравнению с граммами.
Билет №5 — Силы взаимодействия молекул. Броуновское движение.
Если молекулы существуют и движутся, значит, между ними обязательно существуют силы взаимодействия, которые зависят от отношения между их диаметром и расстояниями между ними а) rd, Fпр>Fот; б) rd, Fпр
Вещество может находится в трёх агрегатных состояниях газообразном, жидком и твёрдом. Особенность строения газообразных веществ состоит в том, что расстояние между молекулами или атомами в нём во много раз больше размеров самих частиц. Силы взаимодействия между частицами газа очень малы, поэтому они постоянно хаотично двигаются, и тела в газообразном состоянии не сохраняют свою форму и объём. В жидкостях расстояние между молекулами равно размерам самих молекул, молекулы колеблются около положения равновесия, но всегда совершают прыжки, перескакивая с одного места на другое. Этим обусловлено наличие сильных сил взаимодействия у жидкостей и их физические свойства (сохраняют объём, но не сохраняют форму). Молекулы в твёрдых телах находятся в строгом порядке и колеблются, не покидая своего положения равновесия. Силы взаимодействия в твёрдых телах сильнее, чем в жидкостях, твёрдые тела сохраняют свою форму и объём.
Билет №7 — Идеальный газ.
Идеальный газ — это газ, взаимодействие между молекулами которого пренебрежимо мало. Идеальный газ — это реальный газ в сильно разряженном состоянии. Молекулы идеального газа не взаимодействуют друг с другом, то есть Еп=0, но Ек0. Молекула газа ударяются о стенки сосуда, тем самым создавая давление. Давление определяется для всех частиц, находящихся в данном объёме и зависит от количества молекул, их скорости, кинетической энергии и числа в единице объёма, то есть концентрации.
Билет №8 — Основное уравнение МКТ.
Это уравнение показывает зависимость давления газа от средней кинетической энергии его молекул. Выведем его. Для этого вычислим давление газа на стенку CD сосуда ABCD площадью S. Каждая молекула, ударяясь о стенку сосуда, передаёт ей импульс m0Vх и отскакивая от стенки передаёт ей тот же импульс, то есть в общей сложности стенке сосуда передаётся импульс 2m0Vх, но молекул много, и их общий импульс, то есть импульс, передаваемый стенке сосуда равен 2m0VхZ, где Z — число столкновений всех молекул со стенкой за это время. Z~nVхS, но из всех молекул лишь половина движется в сторону CD, а другие — в обратную сторону, значит, Z=nVхS. Подставляя, получим 2m0VхZ=m0nV2хS. По второму закону Ньютона F=m0nV2хS. V2х следует брать как среднее значение квадрата скорости V2х=V2, значит F=m0nV2. Тогда p==m0nV2. Основное уравнение МКТ связывает макроскопическую величину p с микроскопическим m0, V2 и n. Если учесть, что Е=m0V2, то это уравнение можно записать так p=nE. Давление идеального газа пропорционально произведению концентрации молекул на среднюю кинетическую энергию поступательного движения молекул.
Билет №9 — Термодинамические параметры. Температура и её измерение. Тепловое равновесие.
Величины, характеризующие состояние макроскопических тел без учёта молекулярного строения тел макроскопическими (термодинамическими) параметрами. К ним относятся V, t, p и другие. Состояние, при котором все термодинамические параметры остаются сколько угодно долго неизменными. Любое макроскопическое тело или группа тел при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия. Состояние теплового равновесия характеризуется температурой все тела системы имеют одну и ту же температуру. При одинаковых температурах теплообмена не происходит. Разность температур указывает на направление теплообмена. Также температура показывает степень нагретости тела. Для измерения температуры пользуются термометром. Они бывают а) жидкостные (основаны на тепловом расширении). б) газовые (основаны на изменении давления). в) термосопротивление (измерение силы тока в связи с изменением сопротивления проводника). г) металлический (основан на тепловом расширении двух различных металлических пластин). Жидкостные термометры дают погрешность при измерении температуры из-за того, что различные жидкости расширяются по разному. В отличии от них газы расширяются одинаково при нагревании и меняют своё давление и погрешности не происходит.
Билет №11 — Уравнение состояния идеального газа.
На основе зависимости давления газа от концентрации молекул и температуры p=nkT можно получить уравнение, связывающее все три макроскопических параметра p, V и T, характеризующее состояние данной массы достаточно разряженного газа. Это уравнение называется уравнением состояния идеального газа. Подставим в уравнение p=nkT формулу концентрации газа n==. Получим pV=kNaT. Произведение постоянной Больцмана на число Авогадро называется универсальной (молярной) газовой постоянной. R=1,38*10*6,02*10моль=8,31. Подставим R в уравнение и получим pV=RT. Полученное уравнение называется уравнением Менделеева-Клапейрона. Из этого уравнения можно получить связь между p, V и T идеального газа в любых двух состояниях. =R, =R. Для газа данной массы правые части этих уравнений равны, а значит равны и любые части, значит ==const (уравнение Клапейрона). Уравнение состояния позволяет определить один из макроскопических параметров по двум другим, узнать, какие процессы протекают в системе.
Билет №12 — Газовые законы.
С помощью уравнения Клапейрона можно исследовать процессы, в которых масса газа и один из трёх макроскопических параметров постоянны. Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами. Процессы, протекающие при неизменном значении одного из параметров называют изопроцессами. Процесс изменения состояния термодинамической системы макроскопических тел при неизменной температуре называют изотермическим. pV=const при T=const — закон Бойля-Мариотта. Процесс изменения состояния термодинамической системы макроскопических тел при неизменном давлении называют изобарным. =const при p=const — закон Гей-Люссака. График — изобара. Процесс изменения состояния термодинамической системы макроскопических тел при неизменном объёме называют изохорным. =const при V=const — закон Шарля. График — изохора.
Билет №13 — Внутренняя энергия.
Кроме механической энергии все макроскопические тела обладают ещё и внутренней энергией. Внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) относительно центра масс тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел). Внутренняя энергия идеального газа определяется кинетической энергией движущихся частиц, так как Еп=0. Е= одного атома, число атомов N=. U=. Na*k=R (универсальная газовая постоянная). U=. U=. Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре U~T, массе U~m, и обратно пропорциональна молярной массе U~. Внутренняя энергия макроскопических тел определяется однозначно параметрами, характеризующими состояние этих тел T и V.
Билет №14 — Работа, необходимая для изменения состояния газа.
При совершении работы газом или над газом его внутренняя энергия изменяется, так как происходит сжатие и при упругих соударениях молекул газа с движущимся поршнем, изменяется их кинетическая энергия и изменяется состояние газа. 1)h=h-h=-( h-h). 2)h= h-h. F`=F — третий закон Ньютона. A=F*S*cos. A — работа над газом, A`- работа газа. A`=F`*h=pS ( h-h)=p*V. 1) Если работа совершается над газом, то h<0, V<0, значит A`<0, A>0. 2) Если работу совершает газ, то h>0, V>0, значит A`>0, A<0. Работа газа A` на графике зависимости давления газа от объёма равна площади фигуры ABCD.
Билет №16 — Первый закон термодинамики. Применение его к законам и различным процессам.
В 19 веке немецким учёным Майером был открыт закон сохранения энергии. Формулировка его звучит так Энергия в природе не возникает из ничего и не исчезает количество энергии неизменно, она только переходит из одной формы в другую. Закон сохранения и превращения энергии, распространённый на тепловые явления, носит название первого закона термодинамики. В термодинамике рассматриваются тела, механическая энергия которых не изменяются, а за счёт совершения работы и передачи теплоты изменяется внутренняя энергия. Таким образом, изменение внутренней энергии термодинамической системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе. U=A+Q. В изолированной системе A=0 и Q=0, значит U=U-U=0. U=U. Первый закон термодинамики можно записать так Q=U+A`. Количество теплоты, переданное системе, идёт на изменение её внутренней энергии и на совершение системой работы над внешними силами. Работа и количество теплоты не содержатся в теле. Они лишь характеризуют процесс изменения его внутренней энергии. Рассмотрим применение первого закона к изопроцессам, если система тел — идеальный газ. 1) Изотермический процесс — T=const, T=0, U==0, Q=A`. Если Q>0, то A`>0; если Q<0, то A`<0. 2) Изохорный процесс - V=const, V=0, значит A`=pV=0, значит Q=U. Если Q>0, то U>0; если Q<0, то U<0. 3) Изобарный процесс - p=const, P=0, Q=U+A`, значит Q>0, A`>0, U>0 или Q<0, A`<0, U<0. 4) Адиабатный процесс (процесс, происходящий в теплоизолированной системе) - Q=0, U=A или A`=- U. Если U>0, то A>0; если U<0, то A<0.
Билет №17 — Второй закон термодинамики. Необратимость процессов в природе.
Невозможно перевести теплоту от более холодной системе к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах — так сформулировал второй закон термодинамики немецкий учёный Клаузиус. Важность этого закона состоит в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и всех процессов в природе. Необратимыми называются такие процессы, которые могут самопроизвольно протекать только в одном определённом направлении, в обратном направлении они могут протекать только как одно из звеньев более сложного процесса. Так, если мячик падает, то его механическая энергия при приземлении переходит во внутреннюю энергию поверхности и мячика, но мячик, лежащий на поверхности не может взлететь только за счёт внутренней энергии. Это противоречит второму закону термодинамики.
Билет №18 — Принцип действия тепловых двигателей. КПД теплового двигателя.
Тепловыми двигателями называются машины, в которых внутренняя энергия топлива превращается в механическую энергию. Для того, чтобы двигатель совершал работу, необходима разница давлений по обе стороны поршня или лопасти турбины. Разница давлений достигается за счёт повышения температуры топлива в нагревателе за счёт его (топлива) сгорания. Но часть внутренней энергии остаётся у рабочего тела после работы, когда оно попадает в холодильник. A`=. Коэффициентом полезного действия теплового двигателя называется отношения работы A`, совершаемой двигателем, к количеству теплоты, полученному от нагревателя. ===1-. . Французский учёный Карно придумал идеальную машину с идеальным газом в качестве рабочего тела. max=, <1. Лишь при температуре холодильника, равной абсолютному нулю =1. Повышение КПД тепловых машин и приближение его к максимально возможному - важнейшая техническая задача.
Билет №20 — Зависимость температуры кипения от давления и критическая температура.
Кипение — это интенсивный процесс переход жидкости в пар вследствие образования и роста пузырьков пара, которые при определённой температуре всплывают на её поверхность и лопаются. Эта температура называется температурой кипения. Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем больше температура кипения, и обратно, чем ниже давление, тем ниже температура кипения. Критическая температура — это температура, при которой исчезают различия в физических свойствах между жидкостью и её насыщенным паром. Пар, нагретый до температуры выше критической, называется перегретым. Жидкость, нагретая до температуры выше критической, называют перегретой жидкостью. При температуре выше критической газ ни при каких давлениях нельзя перевести в жидкость.
Билет №21 — Насыщенный и ненасыщенные пары. Зависимость давления от плотности насыщенного пара, от температуры.
Пар, находящийся в динамическом равновесии со своей жидкостью называется насыщенным. Динамическое равновесие между жидкостью и паром устанавливается тогда, когда число молекул, покидающих поверхность жидкости, равно числу молекул, в неё возвращающихся. Газ, который простым сжатием можно превратить в жидкость, называется ненасыщенным. Концентрация молекул насыщенного пара и его давление не зависит от объёма. p=nkT. Давление пара p, при котором жидкость находится в равновесии со своим паром, называется давлением насыщенного пара. p=nkT. Так как давление насыщенного пара не зависит от объёма, значит оно зависит только от температуры, но при нагревании часть жидкости переходит в пар, значит, увеличивается его концентрация (плотность), значит давление увеличивается и за счёт увеличения концентрации (участок AB на графике), но когда вся жидкость испарится, то давление будет увеличиваться только за счёт увеличения Т. Закон Шарля не выполняется. Для насыщенного пара выполняются уравнения Менделеева p=pT, p=nkT. Закон Бойля-Мариотта не выполняется, так как давление и n не зависят от объёма.
Билет №22 — Влажность воздуха. Точка росы и измерение влажности.
Влажность воздуха — это содержание водяного пара в воздухе. Абсолютная влажность — это количество водяного пара, содержащееся в одном кубическом литре воздуха (плотность паров воды, содержащихся в воздухе). , =,. Относительная влажность — это отношение абсолютной влажности к количеству водяного пара, необходимого для насыщения одного м воздуха при данной температуре. Относительной влажностью называют отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре к давлению p насыщенного пара при той же температуре *100%. Парциальное давление — это давление, производимое водяным паром, если бы все другие газы отсутствовали. Температура, при которой ненасыщенный пар становится насыщенным, называют точкой росы. Влажность можно измерить с помощью гигрометра (волосяного или металлического) или психрометра. Психрометр состоит из сухого и влажного термометров, по таблице и по разнице температур между ними определяют относительную влажность.
Билет №23 — Кристаллические и амфорные тела.
Твёрдые тела находятся преимущественно в кристаллическом состоянии. Кристаллы — это твёрдые тела, атомы и молекулы которых занимают определённые, упорядоченные положения в пространстве. Кристаллы имеют плоские грани и правильную внешнюю форму. Физические свойства кристалла зависят от выбранного в нём направления, например, кусок слюды в одном направлении можно легко разорвать на тонкие пластинки, но разорвать его по направлению, перпендикулярному пластинкам, значительно сложнее. Это объясняется строением его кристаллической решётки. Зависимость физических свойств от направления внутри кристалла называют анизотропией. Все кристаллы анизотропные. Твёрдое тело, состоящее из большого числа маленьких кристалликов называют поликристаллическим. В поликристаллических телах все направления равноправны и их свойства по всем направлениям одинаковы, но в каждом из маленьких кристалликов анизотропия проявляется. Одиночные кристаллы называются монокристаллами. Примером монокристалла служит крупинка соли, а поликристалла — металлы, кусок сахара. Кроме кристаллической твёрдые тела имеют ещё и амфорную форму. У амфорных тел нет строгого порядка в расположении частиц. Только ближайшие атомы-соседи располагаются в строгом порядке. Свойства 1) Все амфорные тела изотропны, то есть их свойства одинаковы по всем направлениям. 2) При внешних воздействиях амфорные тела обнаруживают одновременно другие свойства как твёрдые тела и текучесть как жидкости. 3) При низких температурах амфорные тела напоминают твёрдые тела по своим свойствам, а при повышении температуры их свойства их свойства всё более и более приближаются к свойствам жидкости. Определённой температуры плавления у амфорных тел нет. Например стекло, смола. Понимание структуры амфорных и кристаллических тел позволяет создавать материалы с заданными свойствами.
Билет №24 — Деформация твёрдых тел. Виды деформации.
Деформацией называется изменение формы или объёма тела. Деформации, которые полностью исчезают после прекращения действия внешних сил называют упругими. Например — растяжение пружины. Деформации, которые не исчезают после прекращения действия внешних сил называют пластическими. Например — деформация пластилина, воска. Деформации растяжения, сжатия. Характеризуются абсолютным удлинением l=l-lи относительным удлинением . При сжатии площадь поперечного сечения увеличивается, при растяжении — уменьшается. Деформацию, при которой происходит смещение слоёв тела относительно друг друга, называют деформацией сдвига. ~.
Билет №25 — Механическое напряжение. Прочность. Запас прочности. Пластичность. Хрупкость.
Механическое напряжение характеризует деформированного тела. Механическим напряжением называют отношение модуля силы упругости к площади поперечного сечения тела , =Па. При малых деформациях напряжение прямо пропорционально относительному удлинению . Закон Гука . Коэффициент пропорциональности Е, входящий в закон Гука называется модулем упругости или модулем Юнга. Закон Гука выполняется только при небольших деформациях. Максимальное напряжение , при котором ещё выполняется закон Гука, называется пределом пропорциональности. Максимальное напряжение, при котором ещё не возникают заметные остаточные деформации, называется пределом упругости . При некотором напряжении удлинение нарастает практически без увеличения нагрузки. Это явление называется текучестью материала. Разрыв материала происходит после того, как напряжение достигает предельного значения , называемого пределом прочности. Эта величина зависит от материала и качества обработки. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными. А материалы, которые при небольших деформациях разрушаются, называют хрупкими.