Системный подход к нормативному регулированию безопасности при обращении с ра-диоактивными отходами

Шарафутдинов Р.Б., начальник отдела НТЦ ЯРБ Госатомнадзора России, канд. техн. наук
Просто невероятно, как сильно могут повредить правила, едва только наведешь во всем слишком сильный порядок.
Георг Лихтенберг, немецкий писатель, ученый-физик
Введение
Радиоактивные отходы (РАО) образуются при эксплуатации объектов ядерного топливного цикла, атомных электростанций, исследовательских реакторов, критических стендов и сборок, мощных источников ионизирующего излучения, судов гражданского и кораблей военно-морского флотов с ядерными энергетическими установками и иными радиационными источниками, а также при использовании изотопной продукции в научных организациях, народном хозяйстве и медицине.
Основное количество (РАО) накоплено в процессе создания ядерного оружия. На базе оборонных объектов был создан ядерный топливный цикл, и в результате Российская Федерация является одной из немногих стран в мире, обладающих всеми элементами ядерного топливного цикла, включающего добычу и обогащение урановых руд, изготовление ядерного топлива, изготовление изотопной продукции, переработку отработавшего ядерного топлива и обращение с РАО. Значительная часть от общего количества накопленных в России РАО образовалось при становлении атомной промышленности, причем основное количество РАО (97% от общего по ядерному топливному циклу) накоплено на ПО Маяк», Горно-химическом комбинате и Сибирском химическом комбинате. Общий объем накопленных в России РАО составляет ~ 6,5Ч106 м3 с суммарной активностью ~ 1,5Ч109 Ки [1]. В настоящее время основное количество РАО образуется в результате переработки отработавшего ядерного топлива.
Таким образом, в Российской Федерации действует комплекс объектов использования атомной энергии, на которых к настоящему времени накоплены и продолжают накапливаться РАО различного вида. Одним из важнейших условий развития атомной промышленности является решение проблем безопасного обращения с РАО.
За последнее десятилетие в Российской Федерации приняты законодательные акты общего характера, направленные на обеспечение ядерной и радиационной безопасности. Они содержат не только общие положения правовой системы по предотвращению вредного воздействия хозяйственной и иной деятельности, но и отдельные положения, относящиеся к обеспечению безопасности при обращении с ядерными материалами, радиоактивными веществами и, в частности, с РАО [2, 3, 4, 5 ,6].
Ряд положений Федерального закона «Об использовании атомной энергии» отражает существующие в Российской Федерации тенденции к гармонизации подходов к обеспечению безопасности при обращении с РАО с принятыми международным сообществом принципами и критериями безопасности. Так, статья 47 устанавливает, что при хранении и переработке РАО должна обеспечиваться надежная защита работников объектов использования атомной энергии, населения и окружающей среды от недопустимого радиационного воздействия и радиоактивного загрязнения. В статье 48 установлено, что при хранении или захоронении РАО должны быть обеспечены их надежная изоляция от окружающей среды, защита настоящего и будущих поколений, биологических ресурсов от радиационного воздействия сверх установленных пределов. Таким образом, принятые международным сообществом принципы «защита будущих поколений и «бремя для будущих поколений» Российская Федерация установила законодательно. Существующая тенденция к гармонизации подходов к обеспечению безопасности при обращении с РАО подтверждается также фактами присоединения нашей страны к целому ряду международных конвенций [7, 8, 9,10], особенно присоединением Российской Федерации в январе 1999 г. к Объединенной конвенции о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами [11].
Вместе с тем действовавшая в Российской Федерации до недавнего времени нормативная база в области обращения с РАО создавалась на основе законодательства бывшего СССР в соответствии с имевшимися в 50-60-е гг. подходами к обеспечению безопасности*. Сложность использования этих нормативных документов (НД) обусловлена следующим рядом взаимосвязанных причин
документы разрабатывались различными ведомствами и организациями, независимо друг от друга и часто представляют собой ведомственные инструкции;
документы зачастую дублируют либо противоречат друг другу;
неоправданно большое количество НД затрудняет их применение пользователями.
Большинство из них к настоящему времени устарели и требуют переработки, поскольку они не в полной мере соответствуют не только современному законодательству Российской Федерации, но и ряду важных принципов обеспечения безопасности, принятых в последние годы международным сообществом, в частности защита будущих поколений обращение с РАО осуществляется таким образом, чтобы предсказуемые последствия для здоровья будущих поколений не превышали соответствующие уровни последствий, которые приемлемы в наши дни; бремя для будущих поколений обращение с РАО осуществляется таким образом, чтобы не налагать чрезмерного бремени на будущие поколения; национальная правовая структура обращение с РАО осуществляется в рамках соответствующей национальной правовой структуры, предусматривающей четкое распределение обязанностей и обеспечение независимых регулирующих функций; контроль за образованием РАО образование РАО удерживается на минимальном практически осуществимом уровне; взаимозависимость образования РАО и обращения с ними надлежащим образом учитываются взаимозависимости между всеми стадиями образования РАО и обращения с ними и др. [12].
Таким образом, изменения правовой основы потребовали создание современной системы нормативного регулирования безопасности при обращении с РАО, т.е. создание совокупности научных, технических и организационных принципов, критериев и требований обеспечения безопасности при обращении с РАО, отвечающих действующему законодательству Российской Федерации, современному состоянию науки и техники, современному мировоззрению на безопасность. Проведенный анализ рекомендаций международных организаций и нормативных документов зарубежных стран показал, что они могут быть использованы в Российской Федерации только после их существенной модификации в соответствии с законодательством Российской Федерации и накопленным практическим опытом обращения с РАО.
В 1996 г. Госатомнадзор России совместно с другими ведомствами и организациями приступил к выполнению работ по созданию современной системы нормативного регулирования безопасности в рамках Федеральной целевой программы «Обращение с радиоактивными отходами и отработавшими ядерными материалами, их утилизация и захоронение на 1996-2005 годы» (далее — ФЦП РАО).
В настоящей статье кратко изложена принятая при разработке системы нормативного регулирования безопасности методология, а также подведены некоторые итоги проведенной работы.
Методология системы нормативного регулирования безопасности при обращении с РАО
Проблемы обращения с РАО — комплексные, требующие учета многочисленных факторов. Для решения таких проблем целесообразно использовать системный подход, имеющий общенаучное значение. Системный подход — научная методология целеполагающей человеческой деятельности. Применение системного подхода в любой практической деятельности заключается в методологической ориентации человека на раскрытие целостности объекта, отношений и связей его элементов, а также конкретных механизмов их реализации [13]. Под «системой» понимается совокупность элементов, находящихся в отношениях и связях между собой и образующих некоторое целостное единство. С помощью понятий «система» и «структура» можно отображать проблемные ситуации с неопределенностью, разделяя «большую» неопределенность на более «мелкие», лучше поддающиеся исследованию [14].
Основываясь на системном подходе, все объекты в России, на которых образуются (накоплены) РАО и обращаются с РАО, можно представить в виде системы обращения с РАО. Совокупность регулирующих воздействий (требований НД) можно представить в виде системы нормативного регулирования безопасности при обращении с РАО.
Тогда обобщенную взаимосвязь системы обеспечения безопасности при обращении с РАО и системы нормативного регулирования безопасности при обращении с РАО можно представить в виде, приведенном на рис.1.
Цель системы является одним из важнейших понятий теории систем [15]. В зависимости от степени познания объекта в это понятие вкладываются различные оттенки. На начальном этапе познания объекта под целью понимают идеальные устремления, «модель желаемого будущего», а по мере дальнейшего познания объекта цель конкретизируется и, последовательно, минуя промежуточные цели, превращается в конкретные результаты деятельности. В практике реализации комплексных проблем это означает, что решаемая проблема подразделяется на несколько субпроблем или промежуточных целей, а последние — на еще более частные вопросы. Такая программа отражает ведущий замысел (идеальный образ) деятельности и является концепцией или стратегией решения проблемы, в данном случае — концепцией обеспечения безопасности при обращении с РАО.
Промежуточная цель такой программы — установление системы нормативного регулирования безопасности при обращении с РАО.
Система обращения с РАО в России со всем многообразием источников образования РАО видов накопленных и образующихся РАО и видов деятельности с ними достаточно сложна для анализа, поэтому было целесообразно ее расчленить на подсистемы* и элементы. Наиболее рациональным в целях настоящей работы было расчленение всей системы обращения с РАО на функциональные подсистемы — группы объектов, на которых обращаются с РАО, и последующее расчленение каждой из функциональных подсистем на подсистемы по видам накопленных и образующихся РАО (агрегатное состояние, уровень активности, радионуклидный состав и т.п.), которые, в свою очередь, подразделялись на элементы.
В качестве элемента системы обращения с РАО принята простейшая неделимая с точки зрения поставленной цели часть системы — конкретный вид деятельности (способ обращения) с определенного вида РАО, требующий регламентации. С точки зрения системы нормативного регулирования безопасности при обращении с РАО элементом является регулирующее воздействие на каждый конкретный вид деятельности с РАО.
В результате такого расчленения системы обращения с РАО (декомпозиции системы в пространстве) ее можно представить в виде древовидной иерархической структуры (рис.2).

Группы объектов, на которых образуются (накоплены) РАО и обращаются с РАО
Виды РАО (агрегатное состояние, уровень активности)
Способы обращения (виды деятельности) с РАО, требующие регламентации
Рис.2. Иерархическая структура системы обращения с РАО
Расчленение системы обращения с РАО на функциональные подсистемы – группы объектов, на которых обращаются с РАО, приведено в табл. 1.
Таблица 1
Система обращения с РАО в России. Функциональные подсистемы (группы объектов обращения с РАО)

1. Добыча урановой руды (подземное выщелачивание, карьерная добыча, шахтная добыча)

2. Гидрометаллургические заводы. Обогащение урановой руды производство уранового концентрата закись-окись урана U3O8 ест (растворение в кислоте, окисление, экстракция или ионный обмен)

3. Сублиматные производства. Конверсия и очистка концентрата U3O8 ест ®уранилнитрат UO2 (NO3)2 ® урантриоксид UO3 ® двуокись урана UO2® тетрафторид урана UF4 ест ® гексафторид урана UF6 ест

4. Разделительные производства. Обогащение урана UF6 ест ® UF6 обогащ

5. Производство ядерного топлива Производство таблетированного уранового ядерного топлива. Производство таблетированного МОХ – топлива. Производство виброуплотненного МОХ-топлива. Гексафторид урана UF6 обогащ ® UO2 ® таблетки (смесь порошков) ® твэл® твс

6. Объекты ядерно-химического комплекса производство изотопной продукции, переработка ОЯТ. Обращение с РАО, накопленными при получении оружейного плутония, конверсии оружейного плутония, переработке ОЯТ, производстве изотопной продукции

7. Атомные станции

8. Исследовательские реакторы, критические стенды и сборки, мощные источники ионизирующего излучения

9. Корабли военно-морского и суда гражданского флотов с ядерными энергетическими установками и иными радиационными источниками

10. Объекты использования источников ионизирующего излучения, включая радиоактивные вещества и изделия на их основе, в различных отраслях промышленности, медицине и сельском хозяйстве (радиационно-химические технологии, промышленная дефектоскопия, промышленная радиография, радиоизотопная энергетика, медицинская, геофизическая, ядерно-аналитическая аппаратура и др.)

11. Объекты сбора, переработки, кондиционирования, хранения и долговременного хранения (захоронения) РАО (система спецкомбинатов «Радон»)

12. Объекты использования ядерных взрывов в мирных целях

13. Объекты добычи руд и сырья, на которых образуются РАО с природной радиоактивностью

В целях обеспечения полноты в систему обращения с РАО включена подсистема 13, не регулируемая Федеральным законом «Об использовании атомной энергии» и включающая группы объектов, на которых образуются РАО с природной радиоактивностью (238U, 232Th, 226Ra, 210Pb, 210Po, 228Th, 228Ra, 222Rn, 220Rn, 40K и др.). К этой подсистеме относятся десятки объектов, в том числе объекты добычи руд современных и погребенных россыпей Au, Pt, Sn, Zr, Ti, W, Ta, Nb, руд коренных месторождений Ta, Nb, углей, лигнитов, горючих сланцов, торфа; стекольного песка; строительного сырья (гравий, песок, глина); нефти и газа; руд коренных месторождений благородных, редких, цветных и черных металлов; горно-химического сырья (фосфориты, апатиты, калийные соли, слюды, калиевые полевые шпаты, рассолы, минеральные воды).
В табл. 2 и 3 в качестве примера приведены результаты системного подхода к обращению с РАО, образующимися при производстве ядерного топлива (подсистема 5), и РАО ядерно-химического комплекса (подсистема 6). Из таблиц видно, что даже для 2 из 13 функциональных подсистем количество видов РАО с учетом их агрегатного состояния, физико-химических свойств, удельной активности и радионуклидного состава очень велико.
Таблица 2
Результаты системного анализа обращения с РАО, образующимися при производстве ядерного топлива

Функциональная подсистема — источник образования РАО
Подсистемы по видам РАО
Способы обращения с РАО. Принимаемые решения

Производство ядерного топлива Производство таблетированного уранового ядерного топлива Производство таблетированного МОХ-топлива Производство виброуплотненного МОХ-топлива Гексафторид урана UF6 обогащ ® UO2 ® таблетки (смесь порошков) ® твэл® твс
5.1. Газообразные отходы (ГРО), вентиляционные выбросы
5.1.1. Сбор, очистка (выдержка), выброс в атмосферу

5.2. Твердые радиоактивные отходы (ТРО) (среднеактивные и низкоактивные)

5.2.1.Твердые радиоактивные технологические отходы (среднеактивные и низкоактивные)
5.2.1.1. Сбор, повторное использование

5.2.2.Твердые радиоактивные нетехнологические отходы (среднеактивные и низкоактивные)
5.2.2.1. Сбор ТРО, хранение (выдержка), переработка, кондиционирование, хранение 5.2.2.2. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 5.2.2.3. Захоронение кондиционированных ТРО

5.3. Жидкие радиоактивные отходы (ЖРО) (среднеактивные и низкоактивные)

5.3.1. .Жидкие радиоактивные технологические отходы
5.3.1.1. Сбор ЖРО 5.3.1.2. Переработка ЖРО (нейтрализация) 5.3.1.3. Размещение в хвостохранилище 5.3.1.4. Реабилитация площадки хвостохранилища

5.3.2. Жидкие радиоактивные нетехнологические отходы (воды спецпрачечных и душевых)
5.3.2.1. Сбор ЖРО 5.3.2.2. Переработка ЖРО (нейтрализация) 5.3.2.3. Размещение в хвостохранилище 5.3.2.4. Реабилитация площадки хвостохранилища 5.3.2.5. Радиоактивные жидкие сбросы

5.4. Отходы вывода объектов из эксплуатации
5.4.1. Сбор ЖРО, очистка, хранение

(выдержка), переработка, кондицио-

нирование, хранение

5.4.2. Сбор ТРО, хранение (выдержка), переработка, кондиционирование, хранение 5.4.3. Захоронение кондиционированных РАО 5.4.4. Реабилитация территории

Таблица 4
Результаты системного анализа обращения с РАО ядерно-химического комплекса

Функциональная подсистема — источник образования РАО
Подсистемы по видам РАО
Способы обращения с РАО. Принимаемые решения

Объекты ядерно-хими-ческого комплекса производство изотопной продукции, переработка ОЯТ. Обращение с РАО, накопленными при получении оружейного плутония, конверсии оружейного плутония, переработке ОЯТ, производстве изотопной продукции
6.1. Газообразные отходы, вентиляционные выбросы
6.1.1. Сбор, очистка (выдержка) и выброс в атмосферу

6.2. Жидкие радиоактивные отходы

6.2.1. Жидкие технологические низкоактивные отходы
6.2.1.1. Сбор, хранение (выдержка), переработка методами упаривания, коагуляции, фильтрации, ионного обмена, селективной сорбции, электродиализа 6.2.1.2. Кондиционирование и хранение 6.2.1.3. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.2.1.4. Захоронение кондиционированных отходов 6.2.1.5. Возврат очищенной воды на повторное использование 6.2.1.6. Радиоактивные жидкие сбросы в промышленные водоемы 6.2.1.7. Хранение в промышленных бассейнах и водоемах 6.2.1.8. Захоронение ЖРО в геологические формации

6.2.2. Жидкие технологические среднеактивные отходы (дренажно-десорбирующие растворы, дезактивационные растворы, растворы от промьвки экстрагента и экстракторов, конденсаты спецгазоочистки, концентраты, пульпы, сорбенты, шламы)
6.2.2.1. Сбор и временное хранение в емкостях 6.2.2.2. Хранение в пульпохранилищах 6.2.2.3. Переработка методом упаривания 6.2.2.4. Возврат очищенной воды на повторное использование 6.2.2.5. Кондиционирование и хранение 6.2.2.6. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.2.2.7. Захоронение кондиционированных отходов 6.2.2.8. Радиоактивные жидкие сбросы в промышленные водоемы 6.2.2.9. Хранение в промышленных бассейнах и водоемах 6.2.2.10. Захоронение ЖРО в геологические формации

6.2.3. Жидкие технологические высокоактивные отходы

6.2.3.1. Жидкие высокоактивные растворы от переработки различных типов облученных блоков и твэлов
6.2.3.1.1. Хранение в емкостях 6.2.3.1.2. Фракционирование 6.2.3.1.3. Кондиционирование (остекловывание), хранение 6.2.3.1.4. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.2.3.1.5. Захоронение кондиционированных отходов

6.2.3.2. Высокоактивные пульпы, гидратные, сульфидные, ферроцианидные осадки
6.2.3.2.1. Сбор и хранение в емкостях 6.2.3.2.2. Кондиционирование (остекловывание), хранение 6.2.3.2.3. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.2.3.2.4. Захоронение кондиционированных отходов

6.2.3.3. Жидкие нетехнологические низко- и среднеактивные отходы (дренажные воды, стоки спецпрачечных и душевых)
6.2.3.3.1. Сбор, переработка, кондиционирование, хранение 6.2.3.3.2. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.2.3.3.3. Захоронение кондиционированных отходов 6.2.3.3.4. Радиоактивные жидкие сбросы в промышленные водоемы 6.2.3.3.5. Хранение в промышленных бассейнах и водоемах

6.3. Твердые радиоактивные отходы

6.3.1. Твердые низко- и среднеактивные отходы
6.3.1.1. Сбор, хранение (выдержка), переработка методом прессования, кондиционирование, хранение 6.3.1.2. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.3.1.3. Захоронение кондиционированных отходов

6.3.2. Твердые высокоактивные отходы
6.3.2.1. Сбор, хранение (выдержка), переработка методом прессования, кондиционирование, хранение 6.3.2.2. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.3.2.3. Захоронение кондиционированных отходов

6.4. Отходы вывода объектов из эксплуатации
6.4.1. Сбор ЖРО, очистка, хранение (выдержка), переработка, кондиционирование, хранение 6.4.2. Сбор ТРО, хранение (выдержка), переработка, кондиционирование, хранение 6.4.3. Транспортирование кондиционированных отходов на долговременное хранение (захоронение) 6.4.4. Захоронение кондиционированных РАО

В результате анализа 13 подсистем было показано, что для регулирования безопасности всей системы обращения с РАО в России требуется более 70 направлений принятия решений по видам РАО и более 250 направлений для принятия решений по способам обращения с ними. Это означает, что необходимо создание такого же количества НД. Такой процесс обращения с РАО был бы раздробленным, неуправляемым и практически не регулируемым. Системный анализ позволил перейти от вербального (словесного) описания проблемы к формальному — созданию концептуальной модели системы безопасного обращения с РАО, являющейся формализованным представлением начальной цели — «модели желаемого будущего» (рис.3).
Концептуальная модель структурирует систему обращения с РАО со всем разнообразием объектов — источников образования РАО, видов РАО и видов деятельности с ними на отдельные подсистемы — этапы обращения с РАО от их образования до захоронения и тем самым позволяет значительно уменьшить количество необходимых для регулирования безопасности направлений для принятия решений, т.е. минимизировать требуемое количество НД.
Концептуальная модель позволила перейти от начальной цели — системы безопасного обращения РАО — к промежуточной — установление системы нормативного регулирования безопасности при обращении с РАО. Начальная и промежуточная цели взаимосвязаны, поскольку безопасное обращение с РАО может быть обеспечено только в рамках определенной регламентации. В процессе реализации промежуточной цели отдельные элементы концептуальной модели становятся материальными объектами. Так, например, требования к обеспечению безопасности при обращении с РАО постепенно воплощаются в реальные установки по обращению с РАО на различных объектах использования атомной энергии.
Для достижения промежуточной цели потребовалась разработка специальной концепции формирования структуры системы нормативного регулирования при обращении с РАО (концепция структуры системы НД). Основной целью создания этой концепции являлась разработка единой, определяющей идеи создания структуры системы НД посредством формулирования основных целей, принципов, путей и средств достижения этих целей. При этом ставились следующие задачи
создать оптимальную структуру системы НД в России;
исключить возможность возникновения внутренней противоречивости отдельных НД системы или неоднозначность устанавливаемых в них требований;
обеспечить эффективность регулирования безопасности при обращении с РАО в России с использованием системы НД;
эффективное использование выделяемых ресурсов на разработку системы НД.
Система НД была определена как логически полная и непротиворечивая совокупность документов, регламентирующих обеспечение безопасности при обращении с РАО. Развитие этого общего определения системы НД позволило сформулировать основные свойства системы НД и ее подсистем, а также основные способы ее создания. В ходе работы над концепцией была разработана методология формирования структуры системы НД, сформулированы принципы ее формирования, разработана ее структура, разработаны основные требования к НД и их содержанию. В качестве базовой аксиомы были сформулированы принципы формирования структуры системы НД полнота, достаточность, иерархичность, равнозначность требований, аддитивность, единство терминологии, интегративность системы НД с существующими системами нормативных документов. При разработке основных положений концепции структуры системы НД применялись методы системного анализа, направленные на активизацию использования интуиции и опыта специалистов, в том числе метод коллективной генерации идеи («мозговой атаки»), метод итеративной процедуры при проведении «мозговой атаки» (метод типа «Дельфи»), системно-структурный метод [16].
В научной литературе до проведения данной работы не было описания методологии принятия решений при формировании систем нормативных документов и выбора оптимальной структуры таких систем.

Основные результаты проведенных работ
Изложенная методология послужила основой НД «Концепция формирования структуры системы нормативных документов, регламентирующих обеспечение безопасности при обращении с радиоактивными отходами», утвержденного постановлениями Госатомнадзора России от 5 ноября 1997 г. № 8 и Минздрава России от 5 января 1998 г. № 2 [17].
Структурой «Концепции…» предусматривается разработка 10 федеральных норм и правил в области использования атомной энергии и ряда руководств по безопасности, в том числе 8 руководств по обеспечению безопасности при обращении с РАО на различных объектах использования атомной энергии. Структура НД может при необходимости дополняться в качестве руководств по безопасности общепромышленными правилами, СНиПами, ГОСТами, ОСТами и т.д. Для сравнения разрабатываемая МАГАТЭ система нормативных документов, регламентирующих обращение с РАО — RADWASS, охватывает 55 документов, в том числе основы безопасности — 1 стандарт; стандарты безопасности — 6; руководства по безопасности — 28; методические пособия — 20.
В разработке «Концепции…» и нормативных документов по обращению с РАО на различных этапах работ принимали участие специалисты Госатомнадзора России, Минатома России, Госкомэкологии России, НТЦ ЯРБ Госатомнадзора России, ВНИИНМ им. А.А. Бочвара, ВНИИПИЭТ, ВНИИПиПТ, концерна «Росэнергоатом», ГНЦ РФ «ФЭИ», НИИКИЭТ, МКЦ «Нуклид» ОКБМ, института «Атомэнергопроект», НПО «Радиевый институт им. В.Г. Хлопина», ЦНИИАТОМИНФОРМ, МосНПО «Радон», РНЦ «Курчатовский институт», ФУМБ и ЭП при Минздраве России, ГНЦ РФ «Институт Биофизики», Научно-исследовательского испытательного центра радиационной безопасности космических объектов Минздрава России, ИГЕМ РАН и др.
Общее число специалистов, участвовавших в работе, составило около 200, из них около 30% — из системы Госатомнадзора России и 70% — из других ведомств и организаций.
Сам факт установления Госатомнадзором России совместно с заинтересованными ведомствами и организациями четкой позиции по нормативному регулированию безопасности при обращении с РАО уже явился важнейшим шагом в совершенствовании государственного регулирования безопасности при обращении с РАО в России. Стоит вспомнить, что период до 1998 г. основными ориентирами Госатомнадзора России при регулировании безопасности при обращении с РАО были санитарно-гигиенические требования, установленные в Санитарных правилах обращения с радиоактивными отходами (СПОРО-85)* и в Санитарных правилах проектирования и эксплуатации атомных станций (СП АЭС 88/97).
К моменту написания настоящей статьи разработан и введен в действие ряд НД, входящих в структуру системы нормативного регулирования безопасности при обращении с РАО [18…27], ряд документов находится в стадии разработки (рис. 4). Использование системного подхода позволило разработать НД, обобщившие требования к обеспечению безопасности при обращении с РАО, образующимися как при эксплуатации объектов использования атомной энергии, так и при их выводе из эксплуатации. Проведенный анализ показал, что первоначально запланированная в «Концепции…» разработка НД «Обращение с РАО, образующимися при выводе из эксплуатации ядерных установок и радиационных источников. Требования безопасности» не требуется. Разработанные и введенные в действие документы позволяют осуществлять нормативное регулирование безопасности большинства видов деятельности с со всеми видами и категориями РАО (за исключением их захоронения) на объектах использования атомной энергии (рис. 5).
Установленные в разработанных НД требования ориентированы на реализацию целей, принципов и требований обеспечения безопасности при обращении с РАО, установленные международным сообществом. В частности, одной из основных проблем безопасности при обращении с РАО является минимизация их образования. Коренные причины проблем минимизации образования РАО связаны главным образом с тем что, при проектировании и эксплуатации объектов использования атомной энергии не в полной мере применяется принцип «взаимозависимость образования РАО и обращения с ними». Основными с точки зрения реализации указанного принципа являются требования к обеспечению качества при обращении с РАО, установленные в [18…21]. Руководства по безопасности [22, 27] содержат способы и методы выполнения указанных требований. Последовательная реализация требований к обеспечению качества при обращении с РАО является одним из ключевых моментов в установлении системы безопасного обращения с РАО.
В настоящее время осуществляется процесс выбора площадок для размещения региональных хранилищ (могильников) РАО. Основными критериями при выборе площадки для хранилищ РАО служат критерии приемлемости РАО для их хранения и захоронения на выбранной площадке. В [19, 20] установлены численные значения основных показателей качества битумного компаунда, цементного компаунда и стеклоподобного материала. В [27] приведены рекомендации по рассмотрению основных характеристик РАО, сфера применимости характеристик РАО для установления критериев приемлемости кондиционированных РАО для их хранения, а также сфера применимости характеристик РАО для установления критериев приемлемости кондиционированных РАО для их захоронения. Совокупность указанных требований и рекомендаций служит ориентиром при разработке методов кондиционирования РАО, при эксплуатации установок по переработке и кондиционированию РАО, при установлении критериев приемлемости РАО для их хранения и захоронения на конкретных площадках.
Необходимо отметить, что часть финансовых и людских ресурсов из средств ФЦП РАО была направлена на разработку документов, не входящих в «Концепцию…», но наиболее актуальных для регулирования безопасности при обращении с РАО на объектах ядерного топливного цикла, в том числе вывод из эксплуатации промышленных реакторов [28] и переработка ОЯТ [29]. Кроме того, за счет средств ФЦП РАО разработан НД, регламентирующий обеспечение безопасности при транспортировании радиоактивных материалов [30], а также руководство по безопасному поддержанию водно-химического режима АЭС [31].
Ход выполнения работ и их основные результаты периодически докладывались на заседаниях Межведомственного координационного совета по управлению ФЦП РАО в Минатоме России, а также на коллегиях Госатомнадзора России. Результаты работ опубликовывались и докладывались на различных конференциях, выпущено более 20 отчетов о НИР.

Вид деятельности с РАОИсточник РАО
Сбор
Переработка
Кондиционирование
Хранение
Захоронение

Ядерные установки (эксплуатация и вывод из эксплуатации)
+
+
+
+

Радиационные источники (эксплуатация и вывод из эксплуатации)
+
+
+
+

Пункты хранения (эксплуатация и вывод из эксплуатации)
+
+
+
+

Виды РАО
Газообразные, жидкие, твердые

Категории РАО
Низкоактивные, среднеактивные, высокоактивные

Рис. 5. Область нормативного регулирования при обращении с РАО, охватываемая
разработанными и введенными в действие НД
«+» — виды деятельности с РАО, виды и категории РАО, охватываемые разработанными и введенными в действие НД
Неудачи, проблемы и задачи
Основной неудачей следует считать факт того, что до настоящего времени НД, регламентирующие захоронение РАО, отсутствуют, несмотря на то, что именно на их разработку были направлены основные усилия, включая международное сотрудничество. Пока разработанные проекты НД представляют собой компиляцию документов МАГАТЭ. Причиной неудачи является прежде всего неправильный выбор разработчиков НД, так и отсутствие ясного понимания у специалистов технических аспектов долговременной безопасности при захоронении РАО.
Другой неудачей, связанной с объективными причинами, является незавершенность разработки НД «Безопасность при обращении с радиоактивными отходами. Общие положения. (ОПБ РАО)». Документ активно разрабатывался в период 1996-1998 гг., когда ожидалось завершение разработки и введение в действие федерального закона «Об обращении с радиоактивными отходами». В 1998 г. разработка ОПБ РАО была приостановлена. В настоящее время правовой основой для новой версии ОПБ РАО может служить [11].
В связи с тем, что формирование ежегодных планов разработки НД осуществлялось исходя из насущных на данный момент интересов ведомств и организаций, не удалось выдержать логическую последовательность при разработке НД в рамках «Концепции…», а именно — от документов более высокого уровня к документам более низкого уровня. Разработан ряд руководств по безопасности при отсутствии требований к безопасности.
Основной проблемой является нормативное регулирование безопасности при обращении с РАО, накопленными в результате предыдущей деятельности.
Все имеющиеся на территории Российской Федерации РАО условно могут быть разделены на
РАО, накопленные в результате предыдущей деятельности в процессе реализации оборонных программ по созданию ядерного оружия на объектах ядерного топливного цикла и других видов деятельности, например, водоемы-хранилища ЖРО, хвостохранилища, хранилища РАО спецкомбинатов «Радон» и другие хранилища РАО. Обеспечение безопасности при обращении с РАО, накопленных в предыдущей деятельности, является наиболее серьезной проблемой как в Российской Федерации, так и за рубежом (США, Франция и др.);
РАО, образующиеся в настоящее время в результате эксплуатации ядерных установок, радиационных источников и пунктов хранения.
В отношении образующихся в настоящее время РАО в большинстве случаев могут быть последовательно реализованы все этапы предложенной модели безопасного обращения с РАО. Однако для РАО, накопленных в результате предыдущей деятельности, такой подход осуществим ограниченно. В большинстве случаев на указанных объектах накоплено значительное количество РАО, а сами хранилища, либо не имеют требуемой с точки зрения современных представлений о безопасности системы физических барьеров на пути возможного распространения ионизирующего излучения и радиоактивных веществ, либо существующая система физических барьеров ненадежна и несовершенна.
Эксплуатирующие организации проводят комплекс мероприятий по повышению безопасности указанных хранилищ РАО, направленных главным образом на обеспечение текущего уровня безопасности. Решение проблем долговременной безопасности хранилищ РАО отложено. Нормативное регулирование эксплуатации и вывода из эксплуатации этих хранилищ осуществляется в настоящее время с помощью документов ведомственного уровня, которые, как правило, не отражают подходов к обеспечению безопасности при решении проблем реабилитации территорий в свете современных требований, установленных законодательством Российской Федерации, международными правовыми документами и рекомендациями международных организаций. Федеральные нормы и правила, устанавливающие требования к обеспечению безопасности при реабилитации таких территорий, включая обращение с РАО на них, не разработаны. Да и необходимо ли это? Ведь сам факт установления федеральных норм и правил, регламентирующих обеспечение безопасности указанных хранилищ РАО, по существу, приведет к легализации нелегализуемого, что, по мнению автора статьи, нецелесообразно. Вопросы регулирования безопасности водоемов-хранилищ ЖРО являются темой НИР, основные результаты которой будут опубликованы в открытой печати.
Основываясь на зарубежном опыте, главным образом США, можно предложить иной путь решения проблем регулирования безопасности при обращении с РАО, накопленных в результате предыдущей деятельности, и реабилитации территорий, загрязненных радиоактивными веществами ,а именно использование программно-целевого метода путем разработки и последовательной реализации стратегии и специальных программ, основанных на
качественном и количественном анализе и ранжировании опасностей (рисков), обусловленных РАО предыдущей деятельности;
оптимизационных исследованиях (оценке влияния альтернативных вариантов на безопасность и окружающую среду).
К сожалению, такие исследования в настоящее время в Российской Федерации практически не проводятся.
В действующем законодательстве Российской Федерации установлены основополагающие правовые положения, позволяющие определить общую стратегию обращения с такими РАО и установить ряд основных задач обеспечения безопасности и регулирования безопасности рассматриваемых хранилищ РАО.
Обеспечения безопасности хранилищ РАО
1. Обосновать текущий уровень безопасности хранилища РАО (в период до его консервации и закрытия) и определить необходимость вмешательства для обеспечения радиационной безопасности работников (персонала) и населения.
2. Провести при необходимости все практически осуществимые мероприятия в целях повышения безопасности, направленные на реализацию следующих принципов
непревышение допустимых пределов индивидуальных доз облучения работников (персонала) и населения (принцип нормирования);
поддержание на возможно низком уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц из населения (принцип оптимизации);
уменьшение вредного воздействия в результате снижения доз должно быть достаточным для обоснования ущерба и издержек, в том числе социальных издержек, связанных с таким вмешательством.
3. Обосновать долговременную безопасность хранилища РАО (в период после его консервации и закрытия) и определить необходимость вмешательства для обеспечения радиационной защиты населения.
4. Принять при необходимости все практически осуществимые меры по обеспечению долговременной безопасности хранилища РАО, при этом необходимо стремиться
избегать действий, имеющих обоснованно предсказуемые последствия для будущих поколений, более серьезные, чем те, которые допускаются в отношении нынешнего поколения;
не возлагать чрезмерного бремени для будущих поколений.
Регулирование безопасности хранилищ РАО
1. Регулирование текущего уровня безопасности хранилища РАО (период до его консервации и закрытия)
нормативное регулирование безопасности и лицензирование видов деятельности с РАО, включая регламентацию технических мер по обеспечению ядерной и радиационной безопасности хранилищ РАО, критериев приемлемости РАО, направленных на хранение (захоронение) в хранилищах РАО, количества РАО, поступаемого в хранилища РАО;
надзор за состоянием барьеров на пути распространения радиоактивных веществ из хранилищ РАО в окружающую среду;
надзор за соблюдение норм и правил, регламентирующих безопасность персонала и населения;
надзор за выполнением инструкций по эксплуатации хранилища РАО.
2. Регулирование долговременной безопасности хранилища РАО (период после его консервации и закрытия) — оценки долговременной безопасности, включающие прогноз долговременного поведения искусственных и естественных природных барьеров на пути возможного распространения радиоактивных веществ в окружающую среду.
Для регулирования безопасности при обращении с РАО установлен эффективный механизм, реализуемый посредством специальных требований в условиях действия лицензии на соответствующий вид деятельности. Для оценки состояния текущего уровня безопасности хранилищ РАО, накопленных в результате предыдущей деятельности, и введения специальных требований в условия действия лицензий на соответствующий вид деятельности достаточно провести анализ на соответствие требованиям норм и правил. Для оценки долговременной безопасности указанных хранилищ РАО подобный подход практически трудно осуществим, поскольку необходимы прогнозные оценки. Таким образом, развитие в России работ по расчетным методам оценки долговременной безопасности хранилищ РАО имеет исключительно важное прикладное значение для целей регулирования безопасности. В настоящее время за рубежом существуют методы оценки безопасности, позволяющие адекватно оценивать потенциальные длительные радиологические воздействия на людей и окружающую среду систем захоронения РАО [32].
Выводы
На базе системного похода межведомственным коллективом под руководством Госатомнадзора России создана концептуальная модель системы безопасного обращения с РАО, сформулирована концепция и установлена структура системы НД по регулированию безопасности при обращении с РАО в Российской Федерации. Применение методов системного анализа позволило оптимизировать систему нормативного регулирования безопасности при обращении с РАО.
Разработанные и введенные в действие федеральные нормы и правила и руководства по безопасности позволяют осуществлять нормативное регулирование безопасности большинства видов деятельности с со всеми видами и категориями РАО (за исключением их захоронения) на объектах использования атомной энергии.
Для целей регулирования безопасности при обращении с РАО, накопленными в результате предыдущей деятельности, и захоронения РАО необходимо развитие работ по расчетным методам оценки долговременной безопасности хранилищ РАО.
Список литературы
Ахунов В.Д., Борзунов А.И. О ходе реализации государственной политики обращения с РАО и ОЯТ в Российской Федерации // Информационный бюллетень «Обращение с радиоактивными отходами и отработавшими ядерными материалами». – М. Минатом России, 2000. – вып. 1. – С. 44.
Об использовании атомной энергии // Федеральный закон № 170-ФЗ, 21 ноября 1995 г.
О радиационной безопасности населения // Федеральный закон № 3-ФЗ, 9 января 1996 г.
О недрах // Федеральный закон № 2395-1, 21 февраля 1992 г.
Об экологической экспертизе // Федеральный закон № 174-ФЗ, 23 ноября 1995 г.
О безопасности гидротехнических сооружений // Федеральный закон № 117-ФЗ, 21 июля 1997 г.
Конвенция об оперативном оповещении о ядерной аварии. — 1986.
Конвенция о физической защите ядерного материала. – 1987.
Конвенция об оказании помощи в случае ядерной аварии или радиационной аварийной ситуации. – 1987.
Конвенция о ядерной безопасности. – 1996.
Объединенная конвенция о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами // Вена МАГАТЭ, INFCIRC/546, 1997.
Серия изданий по безопасности № 111–F. Принципы обращения с радиоактивными отходами. — Вена МАГАТЭ, 1996.
Боулдинг К. Общая теория систем – скелет науки // Исследования по общей теории систем. – М. Прогресс, 1969.- С. 106-124.
Волкова В.И., Денисов А.А. Основы теории систем и системного анализа. Санкт-Петербург, СПб ГТУ, 2001.- С. 56.
Волкова В.И., Денисов А.А. Основы теории систем и системного анализа. Санкт-Петербург, СПб ГТУ, 2001.- С. 27.
Ковалев Е.Е, Хрущ В.Т., Чухин С.Г., Шарафутдинов Р.Б. Концептуальные основы формирования системы нормативно-технических документов по обеспечению радиационной безопасности при обращении с радиоактивными отходами// IV международный симпозиум о радиационной безопасности — 25-27 сентября 1996.. – Обнинск 1996. – С. 106-107.
Ковалев Е.Е., Хрущ В.Т., Чухин С.Г., Шарафутдинов Р.Б., Алпеев А.С. Концепция формирования структуры системы нормативных документов, регламентирующих обеспечение безопасности при обращении с радиоактивными отходами // Атомная энергия. -1998.- № 4. — Т. 84. — вып. 4. – С. 369-378.
Правила безопасности при обращении с радиоактивными отходами атомных станций. НП-002-97 (ПНАЭ Г -14-41-97) // Атомная энергия. — 1998. — Т. 84. — вып. 1. -С. 78-88.
Сбор, переработка, хранение и кондиционирование жидких радиоактивных отходов. Требования безопасности. НП-019-2000. // Вестник Госатомнадзора России, 2000. — № 6(12). — С.3-16.
Сбор, переработка, хранение и кондиционирование твердых радиоактивных отходов. Требования безопасности. НП-020-2000. // Вестник Госатомнадзора России, 2000. — № 6(12). — С.17-26.
Обращение с газообразными радиоактивными отходами. Требования безопасности. НП-021-2000. // Вестник Госатомнадзора России, 2000. -№ 6 (12). -С. 27-33.
Требования к программе обеспечения качества при обращении с радиоактивными отходами. РБ-003-98. // Вестник Госатомнадзора России, 1999. — № 1 (3). -С.32-38.
Обеспечение безопасности при обращении с радиоактивными отходами исследовательских ядерных установок, РБ — 008 -99, Госатомнадзор России.
Оценка безопасности приповерхностных хранилищ радиоактивных отходов, РБ -011-2000, Госатомнадзор России.
Обеспечение безопасности при обращении с радиоактивными отходами, образующимися при добыче, переработке и использовании полезных ископаемых, РБ-014-2000, Вестник Госатомнадзора России, 2001. -№ 4 (17). -С. 32-42.
Обеспечение безопасности при обращении с радиоактивными отходами судов и иных плавсредств с ядерными реакторами и радиационными источниками, РБ-010 -2000, Госатомнадзор России.
Рекомендации по установлению критериев приемлемости кондиционированных радиоактивных отходов для их хранения и захоронения. РБ-23-02. // Вестник Госатомнадзора России, 2001. -№ 6 (19). -С. 46-57.
Правила обеспечения безопасности при выводе из эксплуатации промышленных реакторов. НП-007-98. // Вестник Госатомнадзора России, 1999. -№ 2 (4). -С. 84-112.
Установки по переработке отработавшего ядерного топлива. Требования безопасности. НП-013-99. // Вестник Госатомнадзора России, 2000. -№ 3 (9). -С. 29-40.
Правила безопасности при транспортировании радиоактивных материалов (ПБТРМ-2001), проект федеральных норм и правил. // Вестник Госатомнадзора России, 2001. -№ 5 (18). -С. 54-121.
Водно-химический режим АС. Основные требования безопасности. РБ-002-97 // Вестник Госатомнадзора России, 1998. № 2. -С. 42-45.
Disposal of radioactive waste Can long-term safety be evaluated? An international collective opinion, OECD/Nuclear Energy Agency, International Atomic Energy Agency, Commission of European Communities, OECD, Paris, 1991.

**Всего действовало более 70 нормативных документов, регламентирующих отдельные этапы обращения с РАО.
**Подсистемы — относительно независимые части системы, обладающие свойствами системы.
**СПОРО-85, по существу, устанавливает требования к обращению с РАО «малых производителей РАО» и предназначен для системы спецкомбинатов «Радон».
«