АБЗ

Министерство Общего и Профессионального Образования Российской Федерации
Ростовский государственный строительный университет

Курсовой проект по дисциплине
Производственные предприятия транспортных сооружений

АБЗ

Расчетно-пояснительная записка
111774 РПЗ

Выполнил студент группы Д-327
Стрижачук А. В.
Руководитель
Литвинова Л. А.
Заведующий кафедры
Илиополов С. К.

Ростов-на-Дону
1999 г.

Исходные данные.

Длина участка строительства 10
Ширина проезжей части 7
Толщина асфальтобетона 0,1
Тип асфальтобетона В
Плотность асфальтобетона 2
Число смен 1
Продолжительность работ 4
Длина транспортировки 11
Удельное сопротивление стали 0,12∙10-4 Ом∙м

Содержание

Климатическая характеристика района. 5
1. Обоснование размещения АБЗ. 6
1.1. Сравнение времени остывания асфальтобетонной смеси со временем ее доставки к месту укладки. 6
1.2. Источники обеспечения АБЗ водой и электроэнергией. Нормативные требования. 6
2. Режим работы завода и его производительность. 6
2.1. Часовая производительность АБЗ, QЧ, т/ч. 6
Расчет расхода материалов. 7
3. Определение длины железнодорожного пути для прирельсовых АБЗ. 8
Количество транспортных единиц N, прибывающих в сутки. 8
3.2. Длина фронта разгрузки L, м. 8
4. Склады минеральных материалов. 8
Расчет щебеночных штабелей. 8
4.2. Выбор и расчет ленточных конвейеров. 8
4.3. Выбор типа бульдозера. 9
5. Битумохранилище. 9
5.1. Расчет размеров битумохранилища. 9
5.2. Количество тепла, необходимое для нагрева битума в хранилище и приямке Q, кДж/ч. 10
5.3. Расчет электрической системы подогрева. 11
6. Определение количества битумоплавильных установок. 11
Часовая производительность котла ПК, м3/ч. 11
Расчет количества котлов. 12
Расчет склада и оборудования для подачи минерального порошка. 12
Расчет вместимости силоса в склад. 13
Расчет пневмотранспортной системы. 13
8. Расчет потребности предприятия в электрической энергии и воде. 16
Расчет потребного количества электроэнергии. 16
Определение общего расхода воды. 17
8.3. Определение расхода воды на восстановление запаса в пожарном резервуаре, ВПОЖ, м3/ч. 17
8.4. Определение диаметра трубы водопроводной сети, dТР, м. 17
9. Технологическая схема приготовления модифицированного битума. 17
Литература. 19

Климатическая характеристика района.
Кемеровская область расположена в III-ей дорожно-климатической зоне — зоне со значительным увлажнением грунтов в отдельные периоды годы. Для района проложения автомобильной дороги характерен климат с холодной зимой и теплым летом, что видно из дорожно-климатического графика (рис 1.1).
Лето теплое среднесуточная температура наиболее жаркого месяца (июля) составляет +18,4˚С; зимы холодные со среднесуточной температурой наиболее холодного месяца (января) –19,2˚С. Отрицательные температуры воздуха бывают с ноября по март, а расчетная длительность периода отрицательных температур Т=179 сут.
Абсолютный максимум температуры воздуха в году достигает +38˚С, минимум -55˚С. Следовательно, амплитуда температуры составляет 93˚С. Годовая средняя суточная амплитуда температуры воздуха бывает в июне (13,2˚С), а максимальная в феврале (30,2˚С).
За год выпадает 476 мм осадков; количество осадков в жидком и смешанном виде 362 мм за год; суточный максимум 46 мм. Средняя за зиму высота снежного покрова составляет 51 см, а число дней со снежным покровом до 162 сут (период 03.11 — 13.04).
Для рассматриваемого района зимой преобладают ветры южного, юго-восточного и юго-западного направлений. Летом преобладают ветры южного и северного направлений (рис 1.2). Средняя скорость ветра за январь равна 3,41 м/с. Максимум из средних скоростей по румбам за январь — 6,8 м/с. Средняя скорость ветра за июль равна 3,55 м/с. Максимум из средних скоростей по румбам за июль — 4,4 м/с.

1. Обоснование размещения АБЗ.
Завод будет размещен вблизи железнодорожных путей, так как все дорожно-строительные материалы будут доставляться по ним.
1.1. Сравнение времени остывания асфальтобетонной смеси со временем ее доставки к месту укладки.
Необходимо сравнить время остывания смеси t1, ч, со временем ее доставки к месту укладки t2, ч (t1≥t2).
где G — количество смеси в кузове самосвала, для самосвала ЗИЛ-ММЗ-555, G=4500 кг;
ССМ — теплоемкость горячей смеси, ССМ=1,1 кДж/(кг∙˚С);
F — площадь стенок кузова самосвала, для самосвала ЗИЛ-ММЗ-555 F=11 м2;
h — коэффициент теплопередачи, h=168 кДж/(м2∙ч∙˚С);
ТАБЗ — температура смеси при отправке с АБЗ, ˚С;
ТСМ — температура смеси при ее укладке, ˚С;
ТВ — температура воздуха, ˚С.
где L — дальность транспортировки, км;
v — скорость движения самосвала, v=40…60 км/ч.
1.2. Источники обеспечения АБЗ водой и электроэнергией. Нормативные требования.
Обеспечение АБЗ водой происходит путем водозабора из водопроводной сети. Электроэнергия поступает из городской сети. АБЗ размещают с подветренной стороны к населенному пункту, на расстоянии не ближе 500 м от него. Площадка АБЗ должна быть достаточно ровной, с уклоном 25-30‰, обеспечивающим отвод поверхностных вод. Коэффициент использования площади должен быть не менее 0,6, а коэффициент застройки — не менее 0,4. Уровень грунтовых вод — не выше 4 м.
При размещении зданий и сооружений на территории завода следует учитывать следующее

Здания и сооружения с повышенной пожарной опасностью следует размещать с подветренной стороны по отношению к другим зданиям;
Здания и сооружения вспомогательного производства должны располагаться в зоне цехов основного производства;
Складские сооружения нужно располагать с учетом максимального использования железнодорожных и других подъездных путей для погрузочных, разгрузочных операций и обеспечения подачи материала к основным цехам кратчайшим путем;
Энергетические объекты нужно располагать по отношению к основным потребителям с наименьшей протяженностью трубопровода и ЛЭП;
При устройстве тупиковых дорог необходимо в конце тупика предусматривать петлевые объезды или площадки размером не менее 12х12 м для разворота автомобилей.

2. Режим работы завода и его производительность.
2.1. Часовая производительность АБЗ, QЧ, т/ч.
где П — необходимое количество асфальтобетонной смеси, т;
Ф — плановый фонд времени.
где 8 ч — продолжительность смены;
n — количество смен;
22,3 — число рабочих дней в месяце;
m — количество месяцев укладки смеси;
0,9 — коэффициент использования оборудования в течение смены;
0,9 — коэффициент использования оборудования в течении m месяцев.
где k — коэффициент, учитывающий неравномерный расход смеси, k=1,1…1,5;
F — площадь укладки асфальтобетонной смеси, м2, F=10000∙7=70000 м2;
h — толщина укладки асфальтобетонной смеси, м;
ρ — плотность смеси, ρ=2,0…2,4 т/м3.

Полученное значение округляем до целого числа и принимаем смеситель типа ДС-617.
Расчет расхода материалов.

Требования к материалам.
Для приготовления горячей смеси применяются вязкие нефтяные битумы марок БНД 60/90, БНД 90/130. Щебень следует применять из естественного камня. Не допускается применение щебня из глинистых, известковых, глинисто-песчаных и глинистых сланцев. Пески применяются природные или дробленные. Минеральный порошок применяется активизированный и не активизированный. Допускается использовать в качестве минерального порошка измельченные металлургические шлаки и пылевые отходы промышленности. Активизированный минеральный порошок получают в результате помолки каменных материалов в присутствии активизирующих добавок, в качестве которых используются смеси состоящие из битума и ПАВ в принятом соотношении 1 1
Суточная потребность материалов
где 8 ч — продолжительность смены;
n — число смен;
QЧ — часовая производительность завода, т/ч (м3/ч);
Nki — потребность в Ki компоненте на 100 т асфальтобетонной смеси.
Учитывая естественную убыль (2% для щебня, песка, битума и 0,5% для минерального порошка) получаем

Таблица 1. Потребность АБЗ в минеральных материалах.

Материал
Единица измерения
Суточная потребность
Норма запаса, дней
Запас единовременного хранения

Щебень
м3
72,2
15
1083

Минеральный порошок
т
24,7
15
387

Битум
т
18,1
25
452,5

3. Определение длины железнодорожного пути для прирельсовых АБЗ.
Количество транспортных единиц N, прибывающих в сутки.

где Qi — суточная потребность, т (m=V∙ρ);
k — коэффициент неравномерности подачи груза, k=1,2;
q — грузоподъемность вагона, т;
ρщ — плотность щебня, ρщ=1,58 т/м3.
3.2. Длина фронта разгрузки L, м.

где l — длина вагона, l=15 м;
n — число подач в сутки, n=1…3.

4. Склады минеральных материалов.
Расчет щебеночных штабелей.

Обычно для АБЗ проектируются склады щебня и песка открытого штабельного типа небольшой емкости с погрузочно-разгрузочными механизмами (конвейеры, фронтальные погрузчики). При проектировании необходимо предусмотреть бетонное основание или основание из уплотненного грунта, водоотвод от штабелей, распределительные стенки между штабелями, подачу материалов в штабеля и в агрегат питания ленточными транспортерами.

4.2. Выбор и расчет ленточных конвейеров.
На АБЗ для непрерывной подачи минерального материала используют ленточные и винтовые конвейеры. Ленточными конвейерами можно перемещать песок и щебень в горизонтальном направлении и под углом не превышающим 22˚. Выполняют ленточные конвейеры из нескольких слоев прорезиненной хлопчатобумажной ткани. Ширина ленты В, м, определяется по часовой производительности
где Q — часовая производительность, т/ч;
v — скорость движения ленты, м/с;
ρ — плотность материала, т/м3.

Выбираем конвейер типа С-382А (Т-44).
4.3. Выбор типа бульдозера.
Таблица 2. Марка бульдозера и его характеристики.

Тип и марка машины
Мощность двигателя, кВт
Отвал

Тип
Размеры, мм
Высота подъема, мм
Заглубление, мм

ДЗ-24А (Д-521А)
132
Неповоротный
3640х1480
1200
1000

Производительность ПЭ, т/ч выбранного бульдозера

где V — объем призмы волочения, V=0,5BH2=0,5∙3,64∙(1,48)2=3,987 м3, здесь В — ширина отвала, м; Н — высота отвала, м;
kР — коэффициент разрыхления, kР = 1,05…1,35.
kПР — поправочный коэффициент к объему призмы волочения, зависящий от соотношения ширины В и высоты Н отвала Н/В=0,41, а также физико-механических свойств разрабатываемого грунта, kПР=0,77;
kВ — коэффициент использования машин по времени, kВ=0,8;
ТЦ — продолжительность цикла, с;

ТЦ=tН+tРХ+tХХ+tВСП,
здесь tН — время набора материала,

где LН — длина пути набора, LН=6…10 м;
v1 — скорость на первой передаче, v1=5…10 км/ч;

tРХ — время перемещения грунта, с,

где L — дальность транспортировки, м, L=20 м;
v2 — скорость на второй передаче, v2=6…12 км/ч;

tХХ — время холостого хода, с,

где v3 — скорость на третьей передаче, v3=7…15 км/ч;
tВСП = 20 с;→ ТЦ = 3,84 + 7,2 + 9,16 + 20 = 40,2 с;

5. Битумохранилище.
5.1. Расчет размеров битумохранилища.
Для приема и хранения вяжущих устраивают ямные постоянные и временные битумохранилища только закрытого типа. Битумохранилища устраивают на прирельсовых АБЗ с битумоплавильными установками. Современные закрытые битумохранилища ямного типа должны быть защищены от доступа влаги как наружной, так и подземной путем устройства специальных зданий, дренажей или навесов. Глубина ямного хранилища допускается в пределах 1,5-4 м в зависимости от уровня грунтовых вод. Для достижения рабочей температуры применяют электронагреватели. Наиболее перспективный способ нагрева битума — разогрев в подвижных слоях с использованием закрытых нагревателей. Для забора битума из хранилища устраивают приемники с боку или в центре хранилища. Таким образом, битумохранилище состоит из собственно хранилища, приямка и оборудования для подогрева и передачи битума.
Значение запаса единовременного хранения битума округляем до 500, тогда средняя площадь F, м2 битумохранилища

где Е — емкость битумохранилища, м3;
h — высота слоя битума, h = 1,5…4 м.

Затем, исходя из значения строительного модуля, равного трем, и отношения длины L к ширине В битумохранилища, равного L/B = 1,5, назначаем средние значения длин Lср и Вср.
Ввиду того что стенки битумохранилища устраивают с откосом

5.2. Количество тепла, необходимое для нагрева битума в хранилище и приямке Q, кДж/ч.

где Q1 — количество тепла, затрачиваемое на плавление битума, кДж/ч.

где μ — скрытая теплота плавления битума, μ=126 кДж/кг;
G — количество подогреваемого битума, кг/ч, G = 0,1∙Qсм, где Qсм — производительность выбранного смесителя, кг/ч.

Q2 — количество тепла, затрачиваемое на подогрев битума, кДж/ч

где K — коэффициент, учитывающий потери тепла через стенки хранилища и зеркало битума, K = 1,1;
Сб — теплоемкость битума, Сб =1,47…1,66 кДж/(кг∙єС);
W — содержание воды в битуме, W = 2…5%;
t1 и t2 —
для хранилища t1 = 10єС; t2 = 60єС;

для приемника t1 = 60єС; t2 = 90єС.

Битумоплавильные агрегаты предназначены для плавления, обезвоживания и нагрева битума до рабочей температуры. Разогрев битума в битумохранилище производится в два этапа
I этап Разогрев битума донными нагревателями, уложенными на дне хранилища до температуры текучести (60єС), дно имеет уклон, битум стекает в приямок в котором установлен змеевик.
II этап Разогрев битума в приямке до температуры 90єС. Нагретый битум с помощью насоса перекачивается по трубопроводам в битумоплавильные котлы.

5.3. Расчет электрической системы подогрева.

Потребляемая мощность Р, кВт

В каждом блоке по шесть нагревателей. Мощность одного блока
где n
— количество блоков нагревателей, n = 3…4 шт.

Принимаем материал в спирали нагревателя полосовую сталь с ρ=0,12∙10-6 Ом∙м. Сечение спирали S=10∙10-6 м2.
Мощность фазы, кВт

Сопротивление фазы, Ом

где U=380 В.
Длина спирали, м

Величина тока, А

Плотность тока, А/мм2

6. Определение количества битумоплавильных установок.
Часовая производительность котла ПК, м3/ч.

где n — количество смен;
kВ — 0,75…0,8;
VК — геометрическая емкость котла для выбранного типа агрегата, м3;
kН — коэффициент наполнения котла, kН=0,75…0,8;
tЗ — время заполнения котла, мин

где ПН — производительность насоса (см. таблицу 3).

Таблица 3. Тип насоса и его характеристики.

Тип насоса
Марка насоса
Производительность, л/мин.
Давление, кгс/см2
Мощность двигателя, кВт
Диаметр патрубков, мм

передвижной
ДС-55-1
550
6
10
100/75

tН=270 мин — время выпаривания и нагрев битума до рабочей температуры;
tВ — время выгрузки битума, мин

где ρ — объемная масса битума, ρ=1т/м3;
Q — часовая производительность смесителя, т/ч;
ψ — процентное содержание битума в смеси.

Расчет количества котлов.

где ПБ — суточная потребность в битуме, т/сутки;
kП — коэффициент неравномерности потребления битума, kП=1,2.
Выбираем тип агрегата

Таблица 4. Тип агрегата и его характеристики.

Тип агрегата
Рабочий объем, л
Установленная мощность, кВт
Расход топлива, кг/ч
Производи-тельность, т/ч

э/дв.
э/нагр.

ДС-91
30000∙3
35,9
90
102,5
16,5

Расчет склада и оборудования для подачи минерального порошка.

Для подачи минерального порошка используют два вида подачи механическую и пневмотранспортную. Для механической подачи минерального порошка до расходной емкости применяют шнеко-элеваторную подачу. Применение пневмотранспорта позволяет значительно увеличить производительность труда, сохранность материала, дает возможность подавать минеральный порошок, как по горизонтали, так и по вертикали. Недостаток — большая энергоемкость. Пневматическое транспортирование заключается в непосредственном воздействии сжатого воздуха на перемещаемый материал. По способу работы пневмотранспортное оборудование делится на всасывающее, нагнетательное и всасывающе-нагнетательное. В общем случае пневмотранспортная установка включает компрессор с масло- и влагоотделителем, воздухопроводы, контрольно-измерительные приборы, загрузочные устройства подающие материал к установке, разгрузочные устройства и системы фильтров. Для транспортирования минерального порошка пневмоспособом используют пневмовинтовые и пневмокамерные насосы. Пневмовинтовые насосы используют для транспортирования минерального порошка на расстояние до 400 м. Недостаток — низкий срок службы быстроходных напорных шнеков. Камерные насосы перемещают минеральный порошок на расстояние до 1000 м. Могут применяться в комплекте с силосными складами. Включают в себя несколько герметично закрытых камер, в верхней части которой имеется загрузочное отверстие с устройством для его герметизации. В состав линии подачи входит склад, оборудование, обеспечивающее перемещение минерального порошка от склада до расходной емкости и расходная емкость.

Расчет вместимости силоса в склад.

Рекомендуется хранить минеральный порошок в складах силосного типа с целью избежания дополнительного увлажнения, которое приводит к комкованию и снижению его качества, а также к затруднению транспортирования. Потребная суммарная вместимость силосов склада ∑Vс, м3 составляет
где GП — масса минерального порошка;
ρП — плотность минерального порошка, ρП=1,8 т/м3;
kП — коэффициент учета геометрической емкости, kП=1,1…1,15.
Количество силосов рассчитывается по формуле
где VC — вместимость одного силоса, м3; V=20, 30, 60, 120.

Расчет пневмотранспортной системы.

Для транспортирования минерального порошка до расходной емкости принимается механическая или пневматическая система.
Для транспортирования минерального порошка можно использовать пневмовинтовые или пневмокамерные насосы. Подача в пневмотранспортную установку сжатого воздуха осуществляется компрессором. Потребная производительность компрессора QК, м3/мин, составляет

где QВ — расход, необходимый для обеспечения требуемой производительности пневмосистемы, м3/мин.

где QМ — производительность пневмосистемы, QМ = 0,21·QЧ = 0,21·34,6 = 7,3, т/ч, QЧ — часовая производительность АБЗ;
µ — коэффициент концентрации минерального порошка, µ=20…50;
ρВ — плотность воздуха равная 1,2 кг/м3.
Мощность на привод компрессора NК, кВт

где η=0,8 — КПД привода;
Р0 — начальное давление воздуха, Р0=1 атм;
РК — давление, которое должен создавать компрессор, атм.

где α=1,15…1,25;
РВ=0,3 атм;
РР=НПОЛ+1 — рабочее давление в смесительной камере подающего агрегата, атм, НПОЛ — полное сопротивление пневмотранспортной системы, атм;

где НП — путевые потери давления в атм;
НПОД — потери давления на подъем, атм;
НВХ — потери давления на ввод минерального порошка в трубопровод, атм.
Путевые потери давления

где k — опытный коэффициент сопротивления

где vВ — скорость воздуха зависит от µ; при µ=20…50 соответственно vВ=12…20 м/с;
dТР — диаметр трубопровода, м
λ — коэффициент трения чистого воздуха о стенки трубы

где ν — коэффициент кинематической вязкости воздуха, м2/с, ν=14,9·10-6.
LПР — приведенная длина трубопроводов, м

где ∑lГ — сумма длин горизонтальных участков пневмотрассы, м, ∑lГ=3+3+4+4+20+20=54;
∑lПОВ — длина, эквивалентная сумме поворотов (колен), м, ∑lПОВ=8·4=32 (каждое колено принимаем равным 8 м);
∑lКР — длина, эквивалентная сумме кранов, переключателей. Для каждого крана принимают 8 м, ∑lКР=8·2=16;

Потери давления на подъем

где ρ΄В — 1,8 кг/м3 — средняя плотность воздуха на вертикальном участке;
h — высота подъема материала, м. Принимается 12…15 м, в зависимости от типа асфальто-смесительной установки.

Потери давления при вводе минерального порошка в трубопровод

где χ — коэффициент, зависящий от типа загрузочного устройства. Для винтовых насосов следует принимать χ = 1, для пневмокамерных χ = 2;
vВХ — скорость воздуха при вводе минерального порошка в трубопровод, м/с

ρВХ — плотность воздуха при вводе минерального порошка, кг/м3

Тогда
По формуле (29) находим NК
На основании проведенного расчета производится подбор подающего агрегата по табл. 11 [4].

Таблица 5. Тип подающего агрегата и его характеристики.

Тип и марка насоса
Производи-тельность, м3/ч
Дальность транспортирования, м
Расход сжатого воздуха
Диаметр трубопровода, мм
Установленная мощность, кВт

по горизонтали
по вертикали

К-2305
10
200
35
22
100

Расчет механической системы подачи минерального порошка. Механическая система представлена в виде шнеко-элеваторной подачи. Подающий агрегат — шнек.
Производительность шнека QШ, т/ч составляет
где φ — коэффициент заполнения сечения желоба, φ=0,3;
ρМ — плотность минерального порошка в насыпном виде, ρМ=1,1 т/м3;
DШ — диаметр шнека, принимаем 0,2 м;
t — шаг винта, t=0,5DШ=0,1 м;
n — частота вращения шнека, об/мин ;

kН — коэффициент, учитывающий угол наклона конвейера, kН=1.

Мощность привода шнека N, кВт определяется по формуле

где L —длина шнека, м L=4 м;
ω — коэффициент, характеризующий абразивность материала, для минерального порошка принимается ω=3,2;
k3 — коэффициент, характеризующий трансмиссию, k3=0,15;
VМ=t·n/60= 0,1 — скорость перемещения материала, м/с;
ωВ — коэффициент трения, принимаемый для подшипников качения равным 0,08;
qМ=80·DШ=16 кг/м — погонная масса винта.

Производительность элеватора QЭ, т/ч определяется из выражения

где i — вместимость ковша, составляет 1,3 л;
ε — коэффициент наполнения ковшей материалом, ε=0,8;
t — шаг ковшей, м (0,16; 0,2; 0,25; 0,3; 0,4; 0,5; 0,6; 0,63);
vП=1,0 м/с — скорость подъема ковшей.

Необходимая мощность привода элеватора

где h — высота подъема материала, м, принимается 14 м;
kК — коэффициент, учитывающий массу движущихся элементов, kК=0,6;
А=1,1 — коэффициент, учитывающий форму ковша;
С=0,65 — коэффициент, учитывающий потери на зачерпывание.

Таблица 6. Тип элеватора и его характеристики.

Тип элеватора
Ширина ковша, мм
Вместимость ковша, л
Шаг ковшей, мм
Скорость цепи, м/с
Шаг цепи, мм
Мощность, кВт
Произво-дительность м3/ч

ЭЦГ-200
200
2
300
0,8…1,25
100
2,0
12…18

8. Расчет потребности предприятия в электрической энергии и воде.
Расчет потребного количества электроэнергии.

Потребное количество электроэнергии NЭ, кВт определяется

где kС — коэффициент, учитывающий потери мощности, kС=1,25…1,60;
∑РС — суммарная мощность силовых установок, кВт;

∑РВ — то же, внутреннего освещения, кВт, ∑РВ=5∙269,89+15∙318+9∙132+20∙72=8,75;

∑РН — то же, наружного освещения, кВт, ∑РН=1∙644+3∙837+5∙50=3,41;

Примечание нормы расхода электроэнергии на 1м2 берем по табл. 12 методических указаний.
cosφ=0,75.
Определение общего расхода воды.

Общий расход воды определяется по формуле, м3
где КУ=1,2;
КТ=1,1…1,6;
ВП — расход воды на производственные нужды, м3/ч, ВП=10…30;
ВБ — расход воды на бытовые нужды, потребление, м3/ч, ВБ=0,15…0,45.
8.3. Определение расхода воды на восстановление запаса в пожарном резервуаре, ВПОЖ, м3/ч.

Расход ВПОЖ определяем по формуле

где qПОЖ=5…10 л/с;
Т — время заполнения резервуара, Т=24 ч.

8.4. Определение диаметра трубы водопроводной сети, dТР, м.

где V — скорость движения воды, V=1,0…1,5 м/с.

Принимаем диаметр трубы водопроводной сети равный 0,10 м.
9. Технологическая схема приготовления модифицированного битума.
Сама схема приводится в конце РПЗ. Модифицированный битум — органическое вяжущее, полученное путем смешивания битума с сыпучим модификатором и маслом. Его приготавливаю с целью получения органического вяжущего с наиболее лучшими характеристиками (прочность, морозостойкость, пластичность и др.) по сравнению с обычным битумом.
Назначение масла — понизить эластичность битума, что повышает его сопротивление воздействию отрицательных температур. Сыпучий модификатор повышает прочностные характеристики битума и его сдвигоустойчивость.
В технологическую схему приготовления модифицированного битума входят такие элементы как емкости для хранения материалов (масла, битума); емкость для хранения готового модифицированного битума; дозатор масла; четыре насоса; ленточный конвейер; диспергатор; дозатор.
Масло из емкости подается в дозатор при помощи насоса. Из дозатора масло поступает в диспергатор. В него же по ленточному конвейеру подается сыпучий модификатор и из емкости битум. Для того чтобы все это качественно перемешать, необходимо затратить 6-8 часов. Поэтому для ускорения процесса перемешивания в технологическую схему включен дезинтегратор. С помощью насоса из диспергатора в дезинтегратор подается смесь битума с маслом и сыпучим модификатором. Потом эта смесь, прошедшая обработку в дезинтеграторе, снова подается в диспергатор, где опять подвергается перемешиванию. И так этот цикл повторяется в течение часа, после чего мы получаем модифицированный битум. Его мы можем по битумопроводам подавать на разлив в битумовозы, а при их отсутствии в емкость.

Литература.

Проектирование производственных предприятий дорожного строительства уч. пособие для ВУЗов Высшая школа, 1975. –351 с.
Асфальтобетонные и цементобетонные заводы Справочник/ В. И. Колышев, П. П. Костин. – М. Транспорт, 1982. –207 с.
Вейцман М. И., Соловьев Б. Н. Битумные базы и цехи. – М. Транспорт, 1977. –104 с.
Проектирование АБЗ Методические указания/ М. Аннабердиев. – Ростов-на-Дону, 1972. –17 с.