Изучение технологии нейронных сетей в профильном курсе информатики

Министерство образования Российской Федерации
Биробиджанский государственный педагогический институт
Курсовая работа по методике преподавания информатики
Изучение технологии нейронных сетей в профильном курсе информатики

Выполнил студент 4 курса факультета Математики и Информатики отделения Информатики и Экономики Мурье Данил Александрович
Руководитель к.п.н., доцент кафедры информатики и вычислительной техники Баженов Руслан Иванович

Биробиджан, 2003

Содержание
Введение……………………………………..……………………………….…………
Глава 1. Теоретические основы для разработки содержания обучения технологии нейронных сетей……………….………………………………………………………
1.1 Содержание теории нейронных сетей в профильном курсе информатики…….
1.2 Влияние обучения технологии нейронных сетей на развитие мышления школьников……………………………………………………………………………..
1.3 Теоретические аспекты профильного обучения информатики……….…………
Глава 2. Содержание обучения технологии нейронных сетей……………………….
Заключение………………………………………………………………………………
Список литературы……………………………………………………………………..

Введение
Вычислительная нейронаука (Computational Neuroscience) в современный момент переживает период перехода от юного состояния к зрелости. Сегодняшний уровень теоретического понимания и практического использования нейронных сетей в мировой информационной индустрии все явственнее требует профессиональных знаний в этой области.
Потребность в специалистах в области нейронных сетей обусловила тот факт, что разнообразные курсы по нейронным сетям начали повсеместно входить в программы высшей школы для различных технических специальностей.
Но этого недостаточно. Необходимо организовывать изучение данной области знания еще в школе. Но в школе обучение должно носить скорее характер ознакомительный и мотивирующий на дальнейшее профессиональное обучение в данной области. Целесообразнее организовывать изучение учениками технологиям нейронным сетям в профильном курсе информатики либо в рамках факультативных занятий.
Учитывая тот факт, что в России почти нет опыта по организации и проведению подобных уроков, данное исследование, будет полезным для учителей, стремящихся овладеть методикой обучения школьников нейросетевым технологиям.
Объектом исследования является процесс изучения информатики в профильном курсе.
Предмет – изучение технологии нейронных сетей в профильном курсе информатики.
Цель разработать содержание изучения технологии нейронных сетей в профильном курсе информатики.
Для реализации цели курсовой работы необходимо выполнить следующие задачи
1) отобрать содержание обучения нейронных сетей применительно к профильному курсу;
2) определить влияние обучения технологии нейронных сетей на развитие мышления школьников;
3) определить вид профиля и тип учебного предмета для изучения технологии нейронных сетей в школе;
4) разработать содержание изучения темы «Нейронные сети»;
5) разработать тематическое планирование.
Гипотеза если обучить ученика технологии нейронных сетей, то ученик осознает эффективность применения рациональной стратегии мышления и будет применять эту стратегию в дальнейшем при решении различных задач.

Глава 1 Теоретические основы для разработки содержания обучения технологии нейронных сетей
1.1 Содержание теории нейронных сетей в профильном курсе информатики
Искусственный нейрон
Искуственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синоптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рис.1

рис.1.Искусственный нейрон

представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2, x3…xn, поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1, w2, w3…wn, и поступает на суммирующий блок, обозначенный СУМ. Каждый вес соответствует силе» одной биологической синоптической связи. (Множество весов в совокупности обозначается вектором W). Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET. В векторных обозначениях это может быть компактно записано следующим образом.
NET=XW
Активационные функции
Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT . Активационная функция может быть обычной линейной функцией
OUT=K(NET)
где К –постоянная, пороговой функцией
OUT=1 ,если NET>T
OUT=0 в остальных случаях,
где T – некоторая постоянная пороговая величина, или же функцией более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности. На рис2

рис.2.Искусственный нейрон с активационной функцией

блок, обозначенный F, принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется сжимающей функцией. В качестве сжимающей функции часто используется логистическая или сигмоидальная (S-образная) функция, показанная на рис.3. Эта функция математически выражется как F(x)=1/(1+e-x) . Таким образом,
OUT=1/(1+e-NET)
По аналогии с электронными системами активационную

рис.3.Сигмоидальная логистическая функция

функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как в области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.
Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими. Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что в модели верно схвачены важнейшие черты биологического нейрона.
Однослойные искусственные нейронные сети
Хотя один нейрон и способен выполнять простейшие процедуры распознавания, сила нейронных вычислений проистекает от соединений нейронов в сетях. Простейшая сеть состоит из группы нейронов, образующих слой, как показано в правой части рис.4.

рис.4.Однослойная нейронная сеть

Отметим, что вершины круги слева служат лишь для распределения входных сигналов. Они не выполняют каких-либо вычислений, и по этой причине они обозначены кругами чтобы отличать их от вычисляющих нейронов обозначенных квадратами Каждый элемент из множества входов X отдельным весом соединен с каждым искусственным нейроном. А каждый нейрон выдает взвешенную сумму входов в сеть. В искусственных и биологических сетях многие соединения могут отсутствовать, все соединения показаны в целях общности. Могут иметь место также соединения между выходами и входами элементов в слое.
Удобно считать веса элементами матрицы W. Матрица имеет m строк n столбцов, где m-число входов, а n-число нейронов. Например, w3,2 -это вес, связывающий третий вход со вторым нейроном, таким образом вычисление выходного выходного вектора N, компонентами которого являются выходы OUT нейронов, сводится к матричному умножению N=XW, где N и X -векторы строки.
Многослойные искусственные нейронные сети
Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными способностями. Хотя созданы сети всех конфигураций, какие только можно себе представить, послойная организация нейронов копирует слоистые структуры определенных отделов головного мозга. Оказалось, что такие многослойные сети обладают большими возможностями, чем однослойные и в последние годы были разработаны алгоритмы для их обучения. Многослойные сети могут образовываться каскадами слоев. Выход одного слоя является входом для последующего слоя. Подобная сеть показана на рис.5 и снова изображена со всеми соединениями.
Нелинейная активационная функция
Многослойные сети могут привести к увеличению вычислительной мощности по сравнению с однослойной лишь в том случае, если активационная функция между слоями будет нелинейной.

Рис.5.Двуслойная нейронная сеть

Вычисление выхода слоя заключается в умножении входного вектора на первую весовую матрицу с последующим умножением (если отсутствует нелинейная активационная функция) результирующего вектора на вторую весовую матрицу. Это показывает, что двухслойная линейная сеть эквивалентна одному слою с весовой матрицей, равной произведению двух весовых матриц. Таким образом, для расширения возможностей сетей по сравнению с однослойной сетью необходима нелинейная однослойная функция.
Сети с обратными связями
У сетей, рассмотренных до сих по, не было обратных связей, т.е. соединений, идущих от выходов некоторого слоя к входам этого же слоя или предшествующих слоев. Этот специальный класс сетей называемых сетями прямого распространения представляет интерес и широко используется. Сети более общего вида имеющие соединения от выходов ко входам, называются сетями с обратными связями. У сетей без обратных связей нет памяти их выход полностью определяется текущими входами и значениями весов. В некоторых конфигурациях сетей с обратными связями предыдущие значения выходов возвращаются на входы; выход, следовательно, определяется как текущим входом, так и предыдущими выходами. По этой причине сети с обратными связями могут обладать свойствами сходными с кратковременной человеческой памятью, сетевые выходы частично зависят от предыдущих входов.
Терминология
К сожалению, для искусственных нейронных сетей еще нет опубликованных стандартов и устоявшихся терминов, обозначений и графических представлений. Порой идентичные сетевые парадигмы, представленные различными авторами, покажутся далекими друг от друга. В этой книге выбраны наиболее широко используемые термины. Многие авторы избегают термина «нейрон» для обозначения искусственного нейрона, считая его слишком грубой моделью своего биологического прототипа. Здесь термины «нейрон», «клетка», «элемент» используются взаимозаменяемо для обозначения «искусственного нейрона» как краткие и саморазъясняющие.
Дифференциальные уравнения или разностные уравнения
Алгоритмы обучения, как и вообще искусственные нейронные сети, могут быть представлены как в дифференциальной, так и в конечноразностной форме. При использовании дифференциальных уравнений предполагают, что процессы непрерывны и осуществляются подобно большой аналоговой сети. Для биологической системы, рассматриваемой на микроскопическом уровне, это не так. Активационный уровень биологического нейрона определяется средней скоростью, с которой он посылает дискретные потенциальные импульсы по своему аксону. Средняя скорость обычно рассматривается как аналоговая величина, но важно не забывать о действительном положении вещей. Если моделировать искусственную нейронную сеть на аналоговом компьютере, то весьма желательно использовать представление с помощью дифференциальных уравнений. Однако сегодня большинство работ выполняется на цифровых компьютерах, что заставляет отдавать предпочтение конечно-разностной форме как наиболее легко программируемой. По этой причине на протяжении всей книги используется конечно-разностное представление.
Графическое представление
Как видно из публикаций, нет общепринятого способа подсчета числа слоев в сети. Многослойная сеть состоит из чередующихся множеств нейронов и весов. Ранее в связи с рис.1.5 уже говорилось, что входной слой не выполняет суммирования. Эти нейроны служат лишь в качестве разветвлений для первого множества весов и не влияют на вычислительные возможности сети. По этой причине первый слой не принимается во внимание при подсчете слоев, и сеть, подобная изображенной на рис. 1.5, считается двухслойной, так как только два слоя выполняют вычисления. Далее, веса слоя считаются связанными со следующими за ними нейронами. Следовательно, слой состоит из множества весов со следующими за ними нейронами, суммирующими взвешенные сигналы.
Обучение искусственных нейронных сетей
Среди всех интересных свойств искусственных нейронных сетей ни одно не захватывает так воображения, как их способность к обучению. Их обучение до такой степени напоминает процесс интеллектуального развития человеческой личности, что может показаться, что достигнуто глубокое понимание этого процесса. Но, проявляя осторожность, следует сдерживать эйфорию. Возможности обучения искусственных нейронных сетей ограничены, и нужно решить много сложных задач, чтобы определить, на правильном ли пути мы находимся. Тем не менее, уже получены убедительные достижения, такие как «говорящая сеть» Сейновского, и возникает много других практических применений.
Цель обучения
Сеть обучается, чтобы для некоторого множества входов давать желаемое (или, по крайней мере, сообразное с ним) множество выходов. Каждое такое входное (или выходное) множество рассматривается как вектор. Обучение осуществляется путем последовательного предъявления входных векторов с одновременной подстройкой весов в соответствии с определенной процедурой. В процессе обучения веса сети постепенно становятся такими, чтобы каждый входной вектор вырабатывал выходной вектор.
Обучение с учителем
Различают алгоритмы обучения с учителем и без учителя. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором, разность (ошибка) с помощью обратной связи подается в сеть, и веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня.
Обучение без учителя
Несмотря на многочисленные прикладные достижения, обучение с учителем критиковалось за свою биологическую неправдоподобность. Трудно вообразить обучающий механизм в мозге, который бы сравнивал желаемые и действительные значения выходов, выполняя коррекцию с помощью обратной связи. Если допустить подобный механизм в мозге, то откуда тогда возникают желаемые выходы? Обучение без учителя является намного более правдоподобной моделью обучения в биологической системе. Развитая Кохоненом и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т.е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определенный выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьезной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью.
Алгоритмы обучения.
Большинство современных алгоритмов обучения выросло из концепций Хэбба. Им предложена модель обучения без учителя, в которой синоптическая сила (вес) возрастает, если активированы оба нейрона, источник и приемник. Таким образом, часто используемые пути в сети усиливаются, и феномен привычки и обучения через повторение получает объяснение. В искусственной нейронной сети, использующей обучение по Хэббу, наращивание весов определяется произведением уровней возбуждения передающего и принимающего нейронов. Это можно записать как
w ij(n + 1) = wij(n) + aOUTiOUTj
где wij(n)- значение веса от нейрона i к нейрону j до подстройки, w ij(n + 1)- значение веса от нейрона i к нейрону j после подстройки, a- коэффициент скорости обучения, OUTi- выход нейрона i и вход нейрона j, OUTj — выход нейрона j.
Сети, использующие обучение по Хэббу, конструктивно развивались, однако за последние 20 лет были развиты более эффективные алгоритмы обучения. В частности, были развиты алгоритмы обучения с учителем, приводящие к сетям с более широким диапазоном характеристик обучающих входных образов и большими скоростями обучения, чем использующие простое обучение по Хэббу. В настоящее время используется огромное разнообразие обучающих алгоритмов. Потребовалась бы значительно большая по объему статья, чем эта, для рассмотрения этого предмета полностью. Чтобы рассмотреть этот предмет систематически, если и не исчерпывающе, в каждой из последующих глав подробно описаны алгоритмы обучения для рассматриваемой в главе парадигмы. В дополнение в приложении представлен общий обзор, в определенной мере более обширный, хотя и не очень глубокий. В нем дан исторический контекст алгоритмов обучения, их общая таксономия, ряд преимуществ и ограничений. В силу необходимости это приведет к повторению части материала, оправданием ему служит расширение взгляда на предмет. [6]
1.2 Влияние обучения технологии нейронных сетей на развитие мышления школьников
Установим связь между предметом изучаемой темы – искусственным интеллектом – и мышлением.
Как сложный познавательный процесс мышление издавна вызывает большой интерес у ученых. Возникло немало теорий, имеющих различные теоретические основания.
Рассмотрим наиболее известные теории, объясняющие процесс мышления [1]. Их можно разделить на две большие группы те, которые исходят из гипотезы о наличии у человека природных, не изменяющихся под влиянием жизненного опыта интеллектуальных способностей, и те, в основу которых положено представление о том, что умственные способности человека в основном формируются и развиваются прижизненно.
Концепции, согласно которым интеллектуальные способности и сам интеллект определяются как совокупность внутренних структур, обеспечивающих восприятие и переработку информации с целью получения нового знания, составляют одну группу теорий мышления. Считается, что соответствующие интеллектуальные структуры существуют у человека с рождения в потенциально готовом виде, постепенно проявляясь (развиваясь) по мере взросления организма.
Эта идея априорно существующих интеллектуальных способностей – задатков – характерна для многих работ в теории мышления, выполненных в немецкой школе психологии. Наиболее отчетливо она представлена в гештальттеории мышления, согласно которой способность формировать и преобразовывать структуры, видеть их в реальной действительности и есть осно­ва интеллекта.
В современной психологии влияние идей обсуждаемых теорий прослеживается в понятии схемы. Давно замечено, что мыш­ление, если оно не связано с какой-либо конкретной, внешне детерминированной задачей, внутренне подчиняется определенной логике. Эту логику, которой следует мысль, не имеющая внешней опоры, называют схемой.
Предполагается, что схема рождается на уровне внутренней речи, а затем руководит разверткой мысли, придавая ей внутреннюю стройность и последовательность, логичность. Мысль без схемы обычно называют аутичной мыслью, ее особенности уже были нами рассмотрены. Схема не есть нечто раз и навсегда заданное. Она имеет свою историю развития, которое происходит за счет усвоения логики, средств управления мыслью. Если некоторая схема используется довольно часто без особых изменений, то она превращается в автоматизированный навык мышления, в умственную операцию.
Другие концепции интеллекта предполагают признание неврожденности умственных способностей, возможность и необходимость их прижизненного развития. Они объясняют мышление, исходя из воздействия внешней среды, из идеи внутреннего развития субъекта или взаимодействия того и другого.
Своеобразные концепции мышления представлены в следующих направлениях психологических исследований в эмпирической субъективной психологии, ассоциативной по характеру и интроспективной по основному методу; в гештальтпсихологаи, которая отличалась от предыдущей только отрицанием элементности психических процессов и признанием доминирования их целостности над составом этих элементов, в том числе и в мышлении; в бихевиоризме, сторонники которого пытались заменить процесс мышления как субъективный феномен на поведение (открытое или скрытое, умственное); в психоанализе, который мышление, как и все другие процессы, подчинил мотивации.
Активные психологические исследования мышления ведутся начиная с XVII в. В это время и в течение следующего довольно длительного периода истории психологии мышление фактически отождествлялось с логикой, а в качестве единственного его вида, подлежащего изучению, рассматривалось понятийное теоретическое мышление, которое иногда не совсем правильно называют логическим (неправильно потому, что логика присутствует в любом другом виде мышления не в меньшей степени, чем в данном).
Сама способность к мышлению считалась врожденной, а мышление, как правило, рассматривалось вне развития. К числу интеллектуальных способностей в то время относили созерцание (некоторый аналог современного абстрактного мышления), логические рассуждения и рефлексия (самопознание). Созерцание, кроме того, понималось как умение оперировать образами (в нашей классификации – теоретическое образное мышление), логические рассуждения — как способность рассуждать и делать умозаключения, а рефлексия — как умение заниматься самоанализом. Операциями мышления в свою очередь считались обобщение, анализ, синтез, сравнение и классификация.
Мышление в ассоциативной эмпирической психологии во всех его проявлениях сводилось к ассоциациям, связям следов прошлого и впечатлений, полученных от настоящего опыта. Активность мышления, его творческий характер были основной проблемой, которую (как и избирательность восприятия и памяти) не смогла решить данная теория. Поэтому ее сторонникам не оставалось ничего другого, как объявить умственные творческие способности априорными, не зависящими от ассоциаций с врожденными способностями разума.
В бихевиоризме мышление рассматривалось как процесс формирования сложных связей между стимулами и реакциями, становления практических умений и навыков, связанных с решением задач. В гештальтпсихологии оно понималось как интуи­тивное усмотрение искомого решения за счет обнаружения нужной для него связи или структуры.
Нельзя сказать, что оба последних направления в психологии не дали ничего полезного для понимания мышления. Благодаря бихевиоризму в сферу психологических исследований вошло практическое мышление, а в русле гештальттеории стали обращать особое внимание на моменты интуиции и творчества в мышлении.
Определенные заслуги в решении проблем психологии мышления есть и у психоанализа. Они связаны с привлечением внимания к бессознательным формам мышления, а также к изучению зависимости мышления от мотивов и потребностей человека. В качестве своеобразных форм мышления у человека можно рассматривать уже обсуждавшиеся нами защитные механизмы, которые также впервые начали специально изучаться в психоанализе.
В отечественной психологической науке, основанной на учении о деятельностной природе психики человека, мышление получило новую трактовку. Его стали понимать как особый вид познавательной деятельности. Через введение в психологию Мышления категории деятельности было преодолено противопоставление теоретического и практического интеллекта, субъекта и объекта познания. Тем самым для конкретного исследования открылась новая; ранее невидимая связь, существующая. Между деятельностью и мышлением, а также между различными видами самого мышления. Впервые появилась возможность ставить и решать вопросы о генезисе мышления, о его формировании и развитии у детей в результате целенаправленного обучения. Мышление в теории деятельности стали понимать как прижизненно формирующуюся способность к решению разнообразных задач и целесообразному преобразованию действительности, направленному на то, чтобы открывать скрытые от непосредственного наблюдения ее стороны.
А.Н.Леонтьев, подчеркивая произвольный характер высших форм человеческого мышления, их производность от культуры и возможность развития под влиянием социального опыта, писал, что мышление человека не существует вне общества, вне языка, вне накопленных человечеством знаний и выработанных им способов мыслительной деятельности логических, математических и других действий и операций. Отдельный человек становится субъектом мышления, лишь овладев языком, понятиями, логикой. Им была предложена концепция мышления, согласно которой между структурами внешней, составляющей поведение, и внутренней, составляющей мышление, деятельности существуют отношения аналогии. Внутренняя, мыслительная деятельность не только является производной от внешней, практической, но имеет принципиально то же самое строение. В ней, как и в практической деятельности, могут быть выделены отдельные действия, операции. При этом внешние и внутренние элементы деятельности являются взаимозаменяемыми. В состав мыслительной, теоретической деятельности могут входить внешние, практические действия, и наоборот, в структуру практической деятельности могут включаться внутренние, мыслительные операции и действия.
Деятельностная теория мышления способствовала решению многих практических задач, связанных с обучением и умственным развитием детей. На базе ее были построены такие теории обучения (их же можно рассматривать и как теории развития мышления), как теория П.Я.Гальперина, теория Л.В.Занкова, теория В.В.Давыдова.
В последние несколько десятилетий на базе успехов в разработке идей кибернетики, информатики, алгоритмических языков высокого уровня в математическом программировании появилась возможность построения новой, информационно-кибернетической теории мышления. В ее основе лежат понятия алгоритма, операции, цикла и информации. Первое обозначает последовательность действий, выполнение которых ведет к решению задачи; второе касается отдельного действия, его характера; третье относится к многократному исполнению одних и тех же действий до тех пор, пока не будет получен необходимый результат; четвертое включает совокупность сведений, передаваемых с одной операции на другую в процессе решения задачи. Оказалось, что многие специальные операции, которые применяются в программах машинной обработки информации и в процессе решения задач на ЭВМ, похожи на те, которыми в мышлении пользуется человек. Это открывает возможность изучения операций человеческого мышления на ЭВМ и построения машинных моделей интеллекта.
Развитие мышления
Мышление человека развивается, его интеллектуальные способности совершенствуются [8]. К этому выводу уже давно пришли психологи в результате наблюдений и применения на практике приемов развития мышления. В практическом аспекте развитие интеллекта традиционно рассматривается в трех направлениях филогенетическом, онтогенетическом и экспериментальном. Филогенетический аспект предполагает изучение того, как мышление человека развивалось и совершенствовалось в истории человечества. Онтогенетический подход включает исследование процесса и выделение этапов развития мышления на протяжении жизни одного человека, с рождения до старости. Экспериментальный подход к решению этой же проблемы ориентирован на анализ процесса развития мышления в особых, искусственно созданных (экспериментальных) условиях, рассчитанных на его совершенствование.
Один из наиболее известных психологов современности швейцарский ученый Ж. Пиаже предложил теорию развития интеллекта в детстве, которая оказала большое влияние на современное понимание его развития. В теоретическом плане он придерживался мысли о практическом, деятельностном происхождении основных интеллектуальных операций.
Теория развития мышления ребенка, предложенная Ж. Пиаже, получила название «операциональной» (от слова «операция»). Операция, по Пиаже, представляет собой «внутреннее действие, продукт преобразования («интериоризации») внешнего, предметного действия, скоординированного с другими действиями в единую систему, основным свойством которой является обратимость (для каждой операции существует симметричная и противоположная операция)».
В развитии операционального интеллекта у детей Ж. Пиаже выделил следующие четыре стадии
1. Стадия сенсомоторного интеллекта, охватывающая период жизни ребенка от рождения до примерно двух лет. Она характеризуется развитием способности воспринимать и познавать окружающие ребенка предметы в их достаточно устойчивых свойствах и признаках.
2. Стадия операционального мышления, включающая его развитие в возрасте от двух до семи лет. На этой стадии у ребенка складывается речь, начинается активный процесс интериоризации внешних действий с предметами, формируются наглядные представления.
3. Стадия конкретных операций с предметами. Она характерна для детей в возрасте от 7—8 до 11—12 лет. Здесь умственные операции становятся обратимыми.
4. Стадия формальных операций. Ее в своем развитии достигают дети в среднем возрасте от 11—12 до 14—15 лет. Данная стадия характеризуется способностью ребенка выполнять операции в уме, пользуясь логическими рассуждениями и понятиями. Внутренние умственные операции превращаются на этой стадии в структурно организованное целое.
В нашей стране наиболее широкое практическое применение в обучении мыслительным действиям получила теория формирования и развития интеллектуальных операций, разработанная П.Я.Гальпериным. В основу данной теории было положено представление о генетической зависимости между внутренними интеллектуальными операциями и внешними практическими действиями. Ранее это положение получило разработку во французской психологической школе (А.Валлон) и в трудах Ж.Пиаже. На нем основывали свои теоретические и экспериментальные работы Л.С.Выготский, А.НЛеонтьев, В.В.Давыдов, А.В.Запорожец и многие другие.
П.Я.Гальперин и Н.Ф.Талызина внесли в соответствующую область исследований новые идеи. Ими была разработана теория формирования мышления, получившая название концепции планомерного формирования умственных действий. Гальперин и Талызина выделили этапы интериоризации внешних действий, определили условия, обеспечивающие их наиболее полный и эффективный перевод во внутренние действия с заранее заданными свойствами.
Процесс переноса внешнего действия вовнутрь, по П.Я.Гальперину, совершается поэтапно, проходя строго определенные стадии. На каждом этапе происходит преобразование заданного действия по ряду параметров. В этой теории утверждается, что полноценное действие, т.е. действие высшего интеллектуального уровня, не может сложиться без опоры на предшествующие способы выполнения того же самого действия, в конечном счете – на его исходную, практическую, наглядно-действенную, наиболее полную и развернутую форму.
Четыре параметра, по которым преобразуется действие при его переходе извне внутрь, суть следующие уровень выполнения, мера обобщения, полнота фактически выполняемых операций и мера освоения. По первому из указанных параметров действие может находиться на трех подуровнях действие с материальными предметами, действие в плане громкой речи и действие в уме. Три остальных параметра характеризуют качество сформированного на определенном уровне действия обобщенность, сокращенность и освоенность.
Процесс формирования умственных действий, по П.Я.Гальперину, представляется следующим образом
1. Ознакомление с составом будущего действия в практическом плане, а также с требованиями (образцами), которым он в конечном счете должно будет соответствовать. Это ознакомление есть ориентировочная основа будущего действия.
2. Выполнение заданного действия во внешней форме в практическом плане с реальными предметами или их заменителями. Освоение этого внешнего действия идет по всем основным параметрам с определенным типом ориентировки в каждом.
3. Выполнение действия без непосредственной опоры на внешние предметы или их заменители. Перенесение действия из внешнего плана в план громкой речи. Перенесение действия в речевой план, – считал П.Я.Гальперин, – означает не только выражение действия в речи, но прежде всего речевое выполнение предметного действия.
4. Перенесение громкоречевого действия во внутренний план. Свободное проговаривание действия целиком «про себя».
5. Выполнение действия в плане внутренней речи с соответствующими его преобразованиями и сокращениями, с уходом действия, его процесса и деталей выполнения из сферы сознательного контроля и переходом на уровень интеллектуальных умений и навыков.
Особое место в исследованиях, посвященных развитию мышления, принадлежит изучению процесса формирования понятий. Он представляет собой высший уровень сформированности речевого мышления, а также и высший уровень функционирования как речи, так и мышления, если их рассматривать в отдельности.
С рождения ребенку даны понятия, и этот факт в современной психологии считается общепризнанным. Как же формируются и развиваются понятия? Данный процесс представляет собой усвоение человеком того содержания, которое заложено в понятии. Развитие понятия состоит в изменении его объема и содержания, в расширении и углублении сферы применения данного понятия.
Образование понятий – результат длительной, сложной и активной умственной, коммуникативной и практической деятельности людей, процесса их мышления. Образование понятий у индивида своими корнями уходит в глубокое детство. Л.С.Выготский и Л.С.Сахаров были одними из первых ученых-психологов в нашей стране, кто детально исследовал этот процесс. Они установили ряд стадий, через которые проходит образование понятий у детей.
Сущность методики, которую применили Л.С.Выготский и Л.С.Сахаров (она получила название методики «двойной стимуляции»), сводится к следующему. Испытуемому предлагается два ряда стимулов, которые выполняют различную роль по отношению к поведению один – функцию объекта, на который направлено поведение, а другой – роль знака, с помощью которого поведение организуется.
Например, имеется 20 объемных геометрических фигур, различных по цвету, форме, высоте и размеру. На нижнем плоском основании каждой фигуры, скрытом от взора испытуемого, написаны незнакомые слова, обозначающие усваиваемое понятие. Данное понятие включает в себя одновременно несколько из указанных выше признаков, например, размер, цвет и форму.
Экспериментатор на глазах у ребенка переворачивает одну из фигур и дает ему возможность прочесть написанное на ней слово. Затем он просит испытуемого найти все остальные фигуры с тем же самым словом, не переворачивая их и пользуясь только признаками, замеченными на первой показанной экспериментатором фигуре. Решая эту задачу, ребенок вслух должен объяснить, на какие признаки он ориентируется, подбирая к первой фигуре вторую, третью и т.д.
Если на каком-то шаге испытуемым допущена ошибка, то экспериментатор сам открывает следующую фигуру с нужным названием, но такую, на которой есть признак, не учтенный еще ребенком.
Описанный эксперимент продолжается до тех пор, пока испытуемый не научится безошибочно находить фигуры с одинаковыми названиями и определять признаки, входящие в соответствующее понятие.
С помощью этой методики было установлено, что формирование понятий у детей проходит через три основные ступени
1. Образование неоформленного, неупорядоченного множества отдельных предметов, их синкретического сцепления, обозначаемого одним словом. Эта ступень в свою очередь распадается на три этапа выбор и объединение предметов наугад, выбор на основе пространственного расположения предметов и приведение к одному значению всех, ранее объединенных предметов.
2. Образование понятий-комплексов на основе некоторых объективных признаков. Комплексы такого рода имеют четыре вида ассоциативный (любая внешне замеченная связь берется как достаточное основание для отнесения предметов к одному классу), коллекционный (взаимное дополнение и объединение предметов на основе частного функционального признака), цепной (переход в объединении от одного признака к другому так, что одни предметы объединяются на основании одних, а другие – совершенно иных признаков, причем все они входят в одну и ту же группу), псевдопонятие (внешне – понятие, внутренне – комплекс).
3. Образование настоящих понятий. Здесь предполагаются умения ребенка выделить, абстрагировать элементы и затем интегрировать их в целостное понятие вне зависимости от предметов, которым они принадлежат. Эта ступень включает следующие стадии стадия потенциальных понятий, на которой ребенок выделяет группу предметов по одному общему признаку; стадия истинных понятий, когда абстрагируется ряд необходимых и достаточных признаков для определения понятия, а затем они синтезируются и включаются в соответствующее определение.
Синкретическое мышление и мышление в понятиях-комплексах характерны для детей раннего, дошкольного и младшего школьного возраста. К мышлению в настоящих понятиях ребенок приходит только в подростковом возрасте под влиянием обучения теоретическим основам разных наук. Факты, полученные Л.С.Выготским и Л.С.Сахаровым, в этом плане вполне согласуются с теми данными, которые в своих работах по развитию детского интеллекта приводит Ж.Пиаже. С подростковым возрастом у него тоже связан переход детей к стадии формальных операций, которая, по-видимому, предполагает уме­ние оперировать настоящими понятиями.
В заключение рассмотрим информационную теорию интеллектуально-когнитивного развития, связанную с информационно-кибернетической теорией мышления. Ее авторы, Клар и Уоллес, предположили, что ребенок с рождения обладает тремя качественно различными, иерархически организованными типами продуктивных интеллектуальных систем 1. Система обработки воспринимаемой информации и направления внима­ния с одного ее вида на другой. 2. Система, ответственная за постановку целей и управление целенаправленной деятельностью. 3. Система, отвечающая за изменение существующих сис­тем первого и второго типов и создание новых подобных систем.
Клар и Уоллес выдвинули ряд гипотез, касающихся действия систем третьего типа
1. В то время когда организм практически не занят обработкой извне поступающей информации (когда, например, он спит), система третьего типа перерабатывает результаты ранее поступившей информации, предшествующей умственной активности.
Цель этой переработки – определить следствия предыдущей активности, которые являются устойчивыми. Так, например, имеются системы, которые управляют записью предыдущих событий, разделением этой записи на потенциально устойчивые, согласующиеся друг с другом части и определением этой согласованности от элемента к элементу.
3. Как только подобная согласованная последовательность замечена, в действие вступает другая система – та, которая порождает новую.
4. Формируется система более высокого уровня, включающая в себя предыдущие в качестве элементов или частей.
И так далее. Так можно представить себе, к примеру, формирование логических структур.
До сих пор мы рассматривали естественные пути индивидуального развития мышления. Данные, полученные за последние годы на стыке общей и социальной психологии, показывают, что формирование мышления можно стимулировать групповыми видами интеллектуальной работы. Было замечено, что коллективная деятельность по решению задач способствует усилению познавательных функций людей, в частности улучшению их восприятия и памяти. Аналогичные поиски в области психологии мышления привели ученых к выводу о том, что в некоторых случаях, за исключением только, пожалуй, сложной индивидуальной творческой работы, групповая умственная работа может способствовать развитию индивидуального интеллекта. Было установлено, например, что коллективная работа помогает генерированию и критическому отбору творческих идей.
Одна из методик организации и стимулирования групповой творческой интеллектуальной деятельности получила название «брейнсторминг» (буквально «мозговой штурм»). Его проведение основано на следующих принципах
1. Для решения некоторого класса интеллектуальных задач, для которых трудно отыскать оптимальное решение, работая над ними индивидуально, создается специальная группа людей, между которыми особым образом организуется взаимодействие, рассчитанное на получение «группового эффекта» – весомой прибавки в качестве и скорости принятия нужного решения по сравнению с индивидуальным его поиском.
В подобную рабочую группу включаются люди, которые отличаются друг от друга по психологическим качествам, в совокупности необходимым для нахождения оптимального решения (один, например, больше склонен высказывать идеи, а другой – их критиковать; один обладает быстрой реакцией, но не в состоянии тщательно взвесить ее последствия, другой, напротив, реагирует медленно, но зато тщательно продумывает каждый свой шаг; один стремится к риску, другой склонен к осторожности и т.д.).
3. В созданной группе за счет введения специальных норм и правил взаимодействия создается такая атмосфера, которая стимулирует совместную творческую работу. Поощряется высказывание любой идеи, какой бы странной на первый взгляд она ни казалась. Допускается только критика идей, а не высказавших их людей. Все активно помогают друг другу в работе, особенно высоко оценивается оказание творческой помощи партнеру по группе.
В условиях так организованной групповой творческой работы человек средних интеллектуальных способностей начинает высказывать почти в два раза больше интересных идей, чем в том случае, когда он думает над решением задачи один.
4. Индивидуальная и групповая работа чередуются друг с другом. На одних этапах поиска решения задачи все думают вместе, на других – каждый размышляет в отдельности, на следующем этапе все снова работают вместе и т.д.
Описанная техника стимулирования индивидуального мышления была создана и использовалась до сих пор в основном при работе со взрослыми. Однако нам думается, что она была бы весьма полезной и для развития мышления у детей, а главное – для сплочения детского коллектива и формирования у детей разного возраста необходимых в современной жизни умений и навыков межличностного общения и взаимодействия
Исследования Д. Брунера
В экспериментальной психологии долгое время существует общее представление о том, что люди решают задачи и формируют понятия путем гипотез выдвижения и проверки гипотез. Джером Сеймур Брунер и др. применили модель проверки гипотез к усвоению понятий в своей широко известной работе «Исследование мышления» (Bruner, Goodnow and Austin. A Study of Thinking. 1956), где они провели широкий методологический анализ деятельности по формированию понятий [9].
Формирование понятия начинается с выбора гипотезы, или стратегии, соответствующей целям исследования. Во всех случаях, когда мы стремимся «что-то обнаружить», этот процесс предполагает установление приоритетов, так же как ученый планирует последовательность экспериментов, или юрист задает последовательные вопросы, или доктор проводит ряд диагностических анализов. В нижеследующем отрывке из Брунера и др. описывается процесс выбора стратегии
«Невролог интересуется локализацией структурного зрения у обезьян. Более конкретно, его интересуют шесть кортикальных зон и их роль в структурном зрении. Он знает, что если все шесть зон не повреждены, то и структурное зрение сохранно. Если все шесть зон разрушены, то структурное зрение отсутствует. Его метод исследований – это удаление зон. Как он будет действовать, планируя такое исследование? Разрушать каждый раз по одной зоне? Или все, кроме одной? В каком порядке ему следует проводить эти последовательные эксперименты?
Главный вопрос «Что мы ожидаем получить, выбирая ту или иную последовательность проведения испытаний?”
Конечно, в первую очередь нас интересует возможность получения информации, соответствующей целям этого исследования. Мы можем в любой данный момент выработки понятия выбирать тот вариант, который скажет нам более всего о том, что это за понятие… Короче говоря, управление последовательностью испытываемых вариантов должно повышать или понижать когнитивное напряжение, связанное с усвоением информации… Хорошо задуманный порядок выбора – хорошая «стратегия выбора» – облегчает отслеживание той гипотезы, которая была сочтена надежной или ненадежной на основе полученной информации… Третье преимущество не столь очевидно. Следуя определенному порядку в выборе вариантов для проверки, мы контролируем степень связанного с ней риска…»
В типичном эксперименте Брунер и др. предъявляли испытуемым «всю вселенную» понятий (т.е. все возможные варианты из набора параметров и свойств) и указывали на какой-нибудь пример того понятия, которое испытуемым предстояло постичь. Испытуемые должны были выбрать какой-нибудь другой пример этого же понятия, после чего им говорили, правильно они выбрали или нет, затем они выбирали еще один пример и т.д., пока не усваивали критерий (идентифицировали понятие).
В качестве стратегии формирования понятия испытуемые могли выбрать одну из двух – сканирование или сосредоточение; каждая из них подразделялась так
Одновременное сканирование. Испытуемым начинают со всех возможных гипотез и отбрасывают не выдержавшие проверки.
Последовательное сканирование. Испытуемые начинают с одной гипотезы, придерживаются ее, пока она оправдывается, и затем меня­ют на другую с учетом всего предшествующего опыта.
Консервативное сосредоточение. Испытуемые формулируют гипотезу, выбирают для нее положительный пример в качестве главного, затем производят последовательные переформулировки (при каждой из которых меняется только один признак), замечая после каждой попытки, оказывается ли результат положительным или отрицательным. Например, испытуемому могли предъявить большое количество паттернов и сказать, что один большой красный квадрат является положительным примером, как показано в таблице 1. Поскольку каждый из этих признаков потенциально является существенным, принимается гипотеза 1БК9. Затем испытуемый мог выбрать гипотезу 1БК (выбрав форму как возможный решающий параметр). Отметив, что и 9, и являются положительными примерами, испытуемые могли сделать правильный вывод, что форма несущественна, и переключить свое внимание на цвет, выбрав 1Б39 и так далее, пока, сосредотачивая свое внимание на одном признаке, они не отбрасывали несущественные признаки.
Рискованное сосредоточение характеризуется изменением более чем одного признака за один раз. Хотя консервативное сосредоточение методологически обосновано и, вероятнее всего, приводит к валидному понятию, испытуемые могут склониться к «риску», надеясь быстрее определить понятие.
Из всех вышеописанных стратегий консервативное сосредоточение было наиболее эффективным; прием сканирования давал только временный успех. Трудность же с моделью Брунера состоит в том, что она предполагает, будто испытуемые придерживаются одной стратегии, тогда как в действительности некоторые из них колеблются, переходя в процессе решения задачи от одной стратегии к другой.
Таблица1 Типичный ход стратегий «Консервативное сосредоточение» и «рискованное сосредоточение”

Стимульные паттерны
Категория
Гипотеза

Консервативное сосредоточение

Стимул в фокусе
1БК9
+
1БК9

1БК
+
1БК

1БЗ9

1БК

1МК9
+

2БК9

Понятие 1К

Рискованное сосредоточение

Стимул в фокусе
1БК9
+
1БК9

1
1МК
+

2
2БК9

3
1БЗ9

Понятие 1К

Б – обозначает большой, М – маленький, К – красный, З – зеленый
Стратегии мышления
Излагая суть модели проверки гипотез Брунера, Ж.Готфруа выделил три тактических подхода, к которым прибегают при решении задач [2]. Эти подходы различаются как по эффективности, так и по уровню сложности.
Случайный перебор. При такой стратегии случайным образом формулируется гипотеза либо осуществляется выбор, а затем оценивается их правомерность, и в случае отрицательной оценки выдвигается новое предположение; так продолжается до тех пор, пока не будет найдено решение.
Такая стратегия осуществляется по методу проб и ошибок, и ее используют, как правило, дети и субъекты со слабо структурированным мышлением. Главный ее недостаток состоит в том, что поиск ведется не систематично и поэтому может оказаться неполным и привести либо к отказу от дальнейших попыток, либо к неприятным последствиям (особенно если речь идет, например, о распознавании ядовитых грибов).
Рациональный перебор. При такой стратегии исследуют некое центральное, промежуточное или наименее рискованное предположение, а затем, изменяя каждый раз по одному элементу, «отсекают» неверные элементы поиска.
Рассмотрим простой пример. Ясно, что если меня попросят отгадать неизвестную мне букву латинского алфавита, задавая вопросы, на которые мне будут отвечать «да» или «нет», то логичнее всего будет сначала спросить, расположена ли она в алфавите между a и m или между n и z. Если верным окажется второй вариант, то можно будет спросить, располагается ли она между n и s или между t и z и т.д. При таких последовательных приближениях круг поиска постепенно сужается, пока не будут найдены ключевые элементы искомой категории или поставленной задачи. Именно так мы чаще всего узнаем животное, которое видели во время прогулки, или находим место поломки в двигателе автомобиля.
Систематический перебор. При такой стратегии мышления субъект охватывает своим умом всю совокупность возможных гипотез и систематически анализирует их одну за другой, пытаясь прийти таким образом к каким-то выводам.
Такая стратегия, разумеется, самая строгая, но в то же время и самая скучная. Неудивительно поэтому, что в нашей повседневной жизни она используется редко. Однако это единственная стратегия, позволяющая действительно наиболее адекватно разрабатывать планы долговременных или сложных действий.
В науке, например, очень многие эксперименты бывают заранее обречены на неудачу из-за того, что исследователь с самого начала не предусмотрел все возможные последствия различных манипуляций и меры строгого контроля всех переменных, кроме независимой. С другой стороны, всегда хочется верить, что диагноз, поставленный нам врачом, явился результатом систематического, а не рационального и тем более не случайного перебора.
Все это касается самых различных сторон нашей жизни. Определенную стратегию использует студент, когда решает, что именно надо выучить к экзамену, просмотрев список вопросов, которые могут быть заданы. О стратегиях мышления важно помнить и родителям, выбирающим какой-либо метод воспитания, не оценив предварительно возможные последствия такого воспитания для человека, который когда-то станет взрослым и за которого они несут ответственность. Поскольку люди обычно не располагают всеми необходимыми данными для решения своих проблем и не могут оценить все последствия того или иного выбора, они довольно редко в своей повседневной жизни выбирают действительно наиболее адекватные формы поведения.
Человеческий мозг и компьютер
Ж. Готфруа провел параллель между работой человеческого мозга и компьютера [2]. Речь идет о применении вышеперечисленных стратегий при решении проблем.
Поскольку компьютер может работать только по программе, рассматривать здесь случайный перебор бессмысленно. В случае если речь идет об игре, в которой такая стратегия не используется, было бы не экономно «заставлять» компьютер искать решение задачи с помощью этой стратегии.
Остальные две стратегии используются как человеком, так и компьютером.
Рациональный перебор соответствует эвристическому методу, при котором процессор занимается поисками частичных решений, чтобы максимально повысить вероятность нахождения приемлемого решения, сведя к минимуму время и усилия на поиск.
Систематический перебор соответствует алгоритмическому методу; в этом случае просматриваются все возможные (при имеющемся наборе данных) решения с целью найти то из них, которое наиболее эффективно. Однако компьютер, так же как и человек, не использует эту последнюю стратегию для решения сложных задач. Например, при игре в шахматы алгоритмический метод потребовал бы того, чтобы компьютер для полной уверенности в выигрыше каждый раз просматривал 10120 возможностей. В подобных случаях выгоднее использовать эвристический метод, позволяющий с помощью ряда подпрограмм ограничивать поиски решений конкретными «узкими» задачами, такими как захват центра шахматной доски или атака на короля противника.
Работа нейронных сетей также аналогична процессу мышления, ведь нейронные сети и задумывались изначально как модель работы мозга.
При обучении с учителем нейронная сеть (эмулятор нейронной сети) ищет решение в виде вектора (векторов) весовых коэффициентов. Алгоритм обучения сети методом обратного распространения ошибок использует стратегию рационального перебора решений (векторов), поскольку каждое новое найденное решение приближает сеть к нужному решению.
Случайный выбор вектора весовых коэффициентов практически не способствует нахождению решения, что можно продемонстрировать ученикам, применяя для наглядности такой нейроэмулятор, в котором предусмотрена возможность свободного доступа к коэффициентам. Выбранный авторами данного исследования для изучения эмулятор Neural Network Wizard 1.7 такой возможностью не обладает.
Также в общем случае не эффективен последовательный перебор всех возможных значений коэффициентов (систематический перебор), поскольку число таких комбинаций теоретически бесконечно, а в программной реализации достаточно велико, что требует больших затрат времени на нахождение нужного решения.
По мнению Ж. Готфруа, «компьютер может послужить средством, позволяющим <…> лучше понять мышление и тем самым расширить его возможности» [2, c. 471].
Обучая нейронные сети, ученики сами начнут применять стратегию рационального перебора решений.
1. 3 Теоретические аспекты профильного обучения
В соответствии с распоряжением Правительства Российской Федерации от 29 декабря 2001 г. №1756 «Об одобрении концепции модернизации российского образования на период до 2010 года» на старшей ступени общеобразовательной школы предусматривается профильное обучение, ставится задача создания «системы специализированной подготовки (профильного обучения) в старших классах общеобразовательной школы, ориентированной на индивидуализацию обучения ч социализацию обучающихся, в том числе с учетом реальных потребностей рынка труда <...> отработки гибкой системы профилей и кооперации старшей ступени школы с учреждениями начального, среднего и высшего профессионального образования».
Прежде всего, следует разграничить понятия «профильное обучение» и «профильная школа».
Профильное обучение – средство дифференциации и индивидуализации обучения, позволяющее за счет изменений в структуре, содержании и организации образовательного процесса более полно учитывать интересы, склонности и способности учащихся, создавать условия для обучения старшеклассников в соответствии с их профессиональными интересами и намерениями в отношении продолжения образования. Профильная школа есть институциональная форма реализации этой цели. Это основная форма, однако перспективными в отдельных случаях могут стать иные формы организации профильного обучения, в том числе выводящие реализацию соответствующих образовательных стандартов и программ за стены отдельного общеобразовательного учреждения.
Профильное обучение направлено на реализацию личностно ориентированного учебного процесса. При этом существенно расширяются возможности выстраивания учеником индивидуальной образовательной траектории.
Переход к профильному обучению преследует следующие основные цели
· обеспечить углубленное изучение отдельных предметов программы полного общего образования;
· создать условия для существенной дифференциации содержания обучения старшеклассников с широкими и гибкими возможностями построения школьниками индивидуальных образовательных программ;
· способствовать установлению равного доступа к полноценному образованию разным категориям обучающихся в соответствии с их способностями, индивидуальными склонностями и потребностями;
· расширить возможности социализации учащихся, обеспечить преемственность между общим и профессиональным образованием, более эффективно подготовить выпускников школы к освоению программ высшего профессионального образования.
Общественный запрос на профилизацию школы
Основная идея обновления старшей ступени общего образования состоит в том, что образование здесь должно стать более индивидуализированным, функциональным и эффективным.
Многолетняя практика убедительно показала, что, как минимум, начиная с позднего подросткового возраста, примерно с 15 лет, в системе образования должны быть созданы условия для реализации обучающимися своих интересов, способностей и дальнейших (послешкольных) жизненных планов. Социологические исследования доказывают, что большинство старшеклассников (более 70%) отдают предпочтение тому, чтобы «знать основы главных предметов, а углубленно изучать только те, которые выбираются, чтобы в них специализироваться». Иначе говоря, профилизация обучения в старших классах соответствует структуре образовательных и жизненных установок большинства старшеклассников. При этом традиционную позицию, «как можно глубже и полнее знать все изучаемые в школе предметы (химию, физику, литературу, историю и т.д.)», поддерживают около четверти старшеклассников.
К 15-16 годам у большинства учащихся складывается ориентация на сферу будущей профессиональной деятельности. Так, по данным социологических опросов, проведенных в 2002 году Центром социологических исследований Минобразования России, «профессиональное самоопределение тех, кто в дальнейшем намерен учиться в ПТУ или техникуме (колледже), начинается уже в VIII классе и достигает своего пика в IX, а профессиональное самоопределение тех, кто намерен продолжить учебу в вузе, в основном складывается в IX классе». При этом примерно 70-75% учащихся в конце IX класса уже определились в выборе возможной сферы профессиональной деятельности.
В настоящее время в высшей школе сформировалось устойчивое мнение о необходимости дополнительной специализированной подготовки старшеклассников для прохождения вступительных испытаний и дальнейшего образования в вузах. Традиционная непрофильная подготовка старшеклассников в общеобразовательных учреждениях привела к нарушению преемственности между школой и вузом, породила многочисленные подготовительные отделения вузов, репетиторство, платные курсы и др.
Большинство старшеклассников считают, что существующее ныне общее образование не дает возможности для успешного обучения в вузе и построения дальнейшей профессиональной карьеры. В этом отношении нынешний уровень и характер полного среднего образования считают приемлемым менее 12% опрошенных учащихся старший классов (данные Всероссийского центра изучения общественного мнения).
Возможные направления профилизации и структуры профилей.
Важнейшим вопросом организации профильного обучения является определение структуры и направленности профилизации, а также модели организации профильного обучения. При этом следует учитывать, с одной стороны, стремление наиболее полно учесть индивидуальные интересы, способности, склонности старшеклассников (это ведет к созданию большого числа различных профилей), с другой – ряд факторов, сдерживающих процессы во многом стихийной дифференциации образования введение единого государственного экзамена, утверждение стандарта общего образования, необходимость стабилизации федерального перечня учебников, обеспечение профильного обучения соответствующими педагогическими кадрами и др.
Очевидно, что любая форма профилизации обучения ведет к сокращению инвариантного компонента. В отличие от привычных моделей школ с углубленным изучением отдельных предметов, когда один-два предмета изучаются по углубленным программам, а остальные – на базовом уровне, реализация профильного обучения возможна только при условии относительного сокращения учебного материала непрофильных предметов, изучаемых с целью завершения базовой общеобразовательной подготовки учащихся.
Модель общеобразовательного учреждения с профильным обучением на старшей ступени предусматривает возможность разнообразных комбинаций учебных предметов, что и будет обеспечивать гибкую систему профильного обучения. Эта система должна включать в себя следующие типы учебных предметов базовые общеобразовательные, профильные и элективные.
Базовые общеобразовательные предметы являются обязательными для всех учащихся во всех профилях обучения. Предлагается следующий набор обязательных общеобразовательных предметов математика, история, русский и иностранные языки, физическая культура, а также интегрированные курсы обществоведения (для естественно-математического, технологического и иных возможных профилей), естествознания (для гуманитарного, социально-экономического и иных возможных профилей).
Профильные общеобразовательные предметы – предметы повышенного уровня, определяющие направленность каждого конкретного профиля обучения. Например, физика, химия, биология – профильные предметы в естественно-научном профиле; литература, русский и иностранные языки – в гуманитарном профиле; история, право, экономика и др. – в социально-экономическом профиле и т.д. Профильные учебные предметы являются обязательными для учащихся, выбравших данный профиль обучения. Содержание указанных двух типов учебных предметов составляет федеральный компонент государственного стандарта общего образования.
Достижение выпускниками уровня требований государственного образовательного стандарта по базовым общеобразовательным и профильным предметам определяется по результатам единого государственного экзамена.
Элективные курсы – обязательные для посещения курсы по выбору учащихся, входящие в состав профиля обучения на старшей ступени школы. Элективные курсы реализуются за счет школьного компонента учебного плана и выполняют две функции. Одни из них могут «поддерживать» изучение основных профильных предметов на заданном профильным стандартом уровне. Например, элективный курс «Математическая статистика» поддерживает изучение профильного предмета экономики. Другие элективные курсы служат для внутрипрофильной специализации обучения и для построения индивидуальных образовательных траекторий. Например, курсы «Информационный бизнес», «Основы менеджмента» и др. в социально-гуманитарном профиле, курсы «Химические технологии», «Экология» и др. – в естественно-научном профиле. Количество элективных курсов, предлагаемых в составе профиля, должно быть избыточно по сравнению с числом курсов, которые обязан выбрать учащийся. По элективным курсам единый государственный экзамен не проводится.
При этом примерное соотношение объемов базовых общеобразовательных, профильных общеобразовательных предметов и элективных курсов определяется пропорцией 50 30 20.
Предлагаемая система не ограничивает общеобразовательное учреждение в организации того или иного профиля обучения (или нескольких профилей одновременно}, а школьника в выборе различных наборов базовых общеобразовательных, профильных предметов и элективных курсов, которые в совокупности и составят его индивидуальную образовательную траекторию. Во многих случаях это потребует реализации нетрадиционных форм обучения, создания новых моделей общего образования.
В качестве примера реализации одной из моделей профильного обучения предлагаются варианты учебных планов для четырех возможных профилей естественно-математический, социально-экономический, гуманитарный, технологический. Следует отметить, что возможно такое построение образовательного процесса, когда комбинации общеобразовательных и профильных предметов дадут самые различные формы профилизации для общеобразовательного учреждения, для отдельных классов, для групп учащихся.
Возможные формы организации профильного обучения
Предлагаемая Концепция профильного обучения исходит из многообразия форм его реализации.
Возможна такая организация образовательных учреждений различных уровней, при которой реализуется не только содержание выбранного профиля, но и предоставляется учащимся возможность осваивать интересное и важное для каждого из них содержание из других профильных предметов. Такая возможность может быть реализована как посредством разнообразных форм организации образовательного процесса (дистанционные курсы, факультативы, экстернат), так и за счет кооперации (объединения образовательных ресурсов) различных образовательных учреждений (общеобразовательные учреждения, учреждения дополнительного, начального и среднего профессионального образования и др.). Это позволит старшекласснику одного общеобразовательного учреждения при необходимости воспользоваться образовательными услугами других учреждений общего, начального и среднего профессионального образования, обеспечивающих наиболее полную реализацию интересов и образовательных потребностей учащихся.
Таким образом, можно выделить несколько вариантов (моделей) организации профильного обучения.
1. Модель внутришкольной профилизации
Общеобразовательное учреждение может быть однопрофильным (реализовывать только один избранный профиль) и многопрофильным (организовать несколько профилей обучения).
Общеобразовательное учреждение может быть в целом не ориентировано на конкретные профили, но за счет значительного увеличения числа элективных курсов предоставлять школьникам (в том числе в форме многообразных учебных межклассных групп) в полной мере осуществлять свои индивидуальные профильные образовательные программы, включая в них те или иные профильные и элективные курсы.
2. Модель сетевой организации
В подобной модели профильное обучение учащихся конкретной школы осуществляется за счет целенаправленного и организованного привлечения образовательных ресурсов иных образовательных учреждений. Оно может строиться в двух основных вариантах.
Первый вариант связан с объединением нескольких общеобразовательных учреждений вокруг наиболее сильного общеобразовательного учреждения, обладающего достаточным материальным и кадровым потенциалом и выполняющего роль «ресурсного центра». В этом случае каждое общеобразовательное учреждение данной группы обеспечивает преподавание в полном объеме базовых общеобразовательных предметов и ту часть профильного обучения (профильные предметы и элективные курсы), которую оно способно реализовать в рамках своих возможностей. Остальную профильную подготовку берет на себя «ресурсный центр».
Второй вариант основан на кооперации общеобразовательного учреждения с учреждениями дополнительного, высшего, среднего и начального профессионального образования и привлечении дополнительных образовательных ресурсов. В этом случае учащимся предоставляется право выбора получения профильного обучения не только там, где он учится, но и в кооперированных с общеобразовательным учреждением образовательных структурах (дистанционные курсы, заочные школы, учреждения профессионального образования и др.).
Предложенный подход не исключает возможности существования и дальнейшего развития универсальных (непрофильных) школ и классов, не ориентированных на профильное обучение и различного рода специализированных общеобразовательных учреждений (хореографические, музыкальные, художественные, спортивные школы, школы-интернаты при крупных вузах и др.).
Решение об организации профильного обучения в конкретном образовательном учреждении принимает его учредитель по представлению администрации образовательного учреждения и органов его общественного самоуправления.
Взаимосвязь профильного обучения со стандартами общего образования и единым государственным экзаменом
Важна связь профильного обучения на старшей ступени с общей установкой на введение государственного стандарта общего образования. Если модернизация образования предусматривает введение института единого государственного экзамена, если речь идет о становлении общенациональной системы контроля качества образования, то, очевидно, объективность и реализуемость подобной системы может быть обеспечена только введением соответствующих образовательных стандартов не только для базовых общеобразовательных, но и для профильных общеобразовательных предметов.
Курсы по выбору
Реализация идеи профильности старшей ступени ставит выпускника основной ступени перед необходимостью совершения ответственного выбора – предварительного самоопределения в отношении профилирующего направления собственной деятельности.
Необходимым условием создания образовательного пространства, способствующего самоопределению учащегося основной ступени, является введение предпрофильной подготовки через организацию курсов по выбору.
В этих целях необходимо
· увеличить часы вариативного (школьного) компонента Базисного учебного плана в выпускном классе основной ступени общего образования;
· при организации обязательных занятий по выбору ввести деление класса на необходимое число групп;
· образовательным учреждениям использовать часы вариативного компонента, прежде всего, на организацию предпрофильной подготовки.
Особенности организации курсов по выбору Основная функция курсов по выбору – профориентационная. В этой связи число таких курсов должно быть по возможности значительным. Они должны носить краткосрочный и чередующийся характер, являться своего рода учебными модулями. Курсы по выбору необходимо вводить постепенно. Единовременное введение целого спектра разнообразных курсов по выбору может поста­вить ученика (семью) перед трудноразрешимой задачей. Необходима целенаправленная, опережающая работа по освоению учеником самого механизма принятия решения, освоения «поля возможностей и ответственности».
Итоговая аттестация выпускников основной школы и организация поступления в старшую профильную школу
В существующей практике число желающих продолжить образование в старших классах определенного общеобразовательного учреждения (лицея, гимназии) больше, чем реальные возможности приема в эти классы. Возникает ситуация конкурсного приема, которая может стать особенно актуальной в условиях перехода на профильное обучение. Поэтому необходимо решить вопрос об открытой, гласной процедуре проведения подобного конкурсного набора.
Следует отметить, что конкурсный набор в старшие классы отдельных общеобразовательных учреждений не входит в противоречие с законодательно закрепленным правом получения каждым ребенком общего (полного) среднего образования (ст. 16, п. 1. абз. 2 Закона Российской Федерации «Об образовании»). Закон гарантирует гражданам право получения образования этого уровня, что, однако, не есть синоним права получения его в конкретном общеобразовательном учреждении. В связи с этим представляется целесообразным, наряду с итоговой аттестацией выпускников основной школы, предусмотреть определенную форму, позволяющую объективно оценить уровень готовности учащихся к продолжению образования по тому или иному профилю, а также создать основу для внедрения в массовую практику механизмов рационального и прозрачного конкурсного набора в старшую профильную школу.
Важную роль должно сыграть введение накопительной оценки (портфолио — «портфель достижений»), которая учитывает различные достижения учащихся по исполнению тех или иных проектов, написанию рефератов, творческих работ, реальные результаты на курсах по выбору и т.п.
Муниципальные органы управления образованием должны обеспечить возможность получения общего среднего (полного) образования каждому школьнику, изъявившему желание в его получении.
Примерные учебные планы для некоторых возможных профилей
Естественно-математический профиль

Учебные курсы
Число недельных учебных часов за два года обучения

I. Базовые общеобразовательные предметы

Русский язык и литература
6

Иностранный язык
6

История
4

Обществоведение
4

Физическая культура
6

II. Профильные общеобразовательные предметы

Математика (базовый общеобразовательный и профильный курсы)
12

Физика
8

Химия
6

География
4

Биология
6

III. Элективные курсы (3 курса на выбор)

5-6 курсов, предлагаемых школой
Всего 12

Учебные практики, проекты, исследовательская деятельность
Не менее 70 учебных часов за 2 года обучения

Социально-экономический профиль

Учебные курсы
Число недельных учебных часов за два года обучения

I. Базовые общеобразовательные предметы

Русский язык и литература
6

Иностранный язык
6

Естествознание
6

Математика
8

Физическая культура
6

II. Профильные общеобразовательные предметы

История (базовый общеобразовательный и профильный курсы)
10

Экономика
6

Право
6

Экономическая и социальная география
4

Социология
4

III. Элективные курсы (3 курса на выбор)

5-6 курсов, предлагаемых школой
Всего 12

Учебные практики, проекты, исследовательская деятельность
Не менее 70 учебных часов за 2 года обучения

Гуманитарный профиль

Учебные курсы
Число недельных учебных часов за два года обучения

I. Базовые общеобразовательные предметы

Математика
6

Естествознание
6

Физическая культура
6

II. Профильные общеобразовательные предметы

Русский язык и литература (базовый общеобразовательный и профильный курсы)
12

Иностранный язык (базовый общеобразовательный и профильный курсы)
10

История (базовый общеобразовательный и профильный курсы)
8

Обществоведение (базовый общеобразовательный и профильный курсы)
8

Искусство
6

III. Элективные курсы (3 курса на выбор)

5-6 курсов, предлагаемых школой
Всего 12

Учебные практики, проекты. исследовательская деятельность
Не менее 70 учебных часов за 2 года обучения

Технологический профиль (специализация — информационные технологии)

Учебные курсы
Число недельных учебных часов за два года обучения

I. Базовые общеобразовательные предметы

Русский язык и литература
6

История и обществоведение
8

Естествознание
6

Физическая культура
6

II. Профильные общеобразовательные предметы

Информатика и ИКТ
10

Математика (базовый общеобразовательный и профильный курсы)
10

Физика
6

Иностранный язык (базовый общеобразовательный и профильный курсы)
8

III. Элективные курсы (3 курса на выбор)

5-6 курсов, предлагаемых школой
24 всего

Учебные практики, проекты, исследовательская деятельность
Не менее 140 учебных часов за 2 года обучения

Авторы исследования считают необходимым проведение занятий по теме «Нейронные сети» в рамках естественно-математического профиля на одном из элективных курсов.
Выбор естественно-математического профиля, во-первых, определяется целью введения данного курса в школе (расширение научного мировоззрения) и, во-вторых, сложностью темы в математическом аспекте.

Глава 2. Содержание обучения технологии нейронных сетей
Авторы данной работы предлагают следующее содержание обучения технологии нейронных сетей.
Содержание образования по теме «Технологии нейронных сетей»
Биологический нейрон и его кибернетическая модель. Преобразование информации нейроном. Архитектура нейронных сетей. Однослойный персептрон. Многослойный персептрон. Преобразование информации нейронной сетью. Обучение нейронной сети. Обучение с учителем. Алгоритм обучения нейронных сетей методом обратного распространения ошибок. Программный эмулятор Neural Network Wizard 1.7. Практическое применение нейронных сетей.
В соответствии с содержанием предлагается следующее поурочное тематическое планирование.
Тематическое планирование по теме «Технологии нейронных сетей» (5 часов)

№ урока
Тема
Вид урока
Опорные знания Опорные умения
Должны знать Должны уметь

1
Формальный нейрон
Урок подачи новых знаний
Знания из области анатомии понятие биологического нейрона его строение, функции
Понятие формального нейрона его структура, механизм обработки информации

2
Нейронные сети
Урок подачи новых знаний
Понятие формального нейрона
Понятие нейронных сетей. Понятие однослойного персептрона. Понятие многослойного персептрона. Знание механизма обработки числовой информации в нейронных сетях. Умение обрабатывать входную информацию.

3
Обучение нейронных сетей
Урок подачи новых знаний
Понятие нейрона и нейронной сети.
Понятие обучения нейронной сети. Обучение с учителем. Обучение без учителя. Сущность алгоритма обучения нейронных сетей методом обратного распространения ошибок.

4
Neural Network Wizard 1.7
Лабораторная работа
Понятия нейронной сети и алгоритма обучения.
Умение работать с программным эмулятором Neural Network Wizard 1.7 знание интерфейса программы, умение устанавливать конфигурацию для нейросистемы, умение обучать систему и умение рассчитывать выходные значения сети по входным параметрам.

5
Применение нейронных сетей
Комбинированный урок
Умение работать с программным эмулятором Neural Network Wizard 1.7
Знание основных областей применения технологии нейронных сетей. Умение решать практические задачи с использованием программного эмулятора Neural Network Wizard 1.7

Примечания.
1) Для усвоения учащимися данной темы необходимы знания из теории матриц, которыми они не обладают. Эту проблему можно решить, заменив понятие матрицы понятиями одномерного массива и двумерного массива, которые сформированы у учащихся при изучении основ алгоритмизации и программирования. Предложенный конспект второго урока реализует эту идею.
2) Нельзя при изучении нейронных сетей отказываться от рассмотрения математической модели нейронной сети. В противном случае, по мнению авторов, есть опасность превращения модели нейронной сети в «черный ящик».
Конспект урока
Урок 2. ТЕМА Нейронные сети
ЦЕЛИ 1) образовательные сформировать понятия нейронной сети, понятия однослойного персептрона, многослойного персептрона, сформировать представления о механизме обработки информации в нейронных сетях, сформировать умение обрабатывать входную информацию;
2) развивающие развить память, абстрактно-логическое мышление;
3) воспитательные воспитать дисциплинированность.
ХОД УРОКА
1. Организационный момент.
[Назвать тему урока]
2. Опрос по теме предыдущего урока (актуализация знаний).
[Двух учеников к доске один ученик объясняет кибернетическую модель нейрона, другой – виды активационных функций; третий ученик, пока двое готовятся у доски, рассказывает о том, что такое нейрокибернетика]
Предполагаемые ответы учащихся
1) Нейрокибернетика
Основную идею нейрокибернетики можно сформулировать следующим образом. Единственный объект, способный мыслить, – это человеческий мозг. Поэтому любое мыслящее устройство должно каким-то образом воспроизводить его структуру.
Нейрокибернетика ориентирована на аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основой человеческого мозга является большое количество (до 1021) связанных между собой взаимодействующих нервных клеток – нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями, или нейросетями.
Основная область применения нейрокомпьютеров – распознавание образов.
2) Нейрон
Искусственный нейрон имитирует свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синоптической силе, и все произведения суммируются, определяя уровень активации нейрона.
Рис 1.
Множество входных сигналов, обозначенных X[1], X[2], X[3],…X[m], поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые одномерным массивом X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес W[1], W[2], W[3],…W[m], и поступает на суммирующий блок, обозначенный СУМ. Каждый вес соответствует «силе» одной биологической синоптической связи. Множество весов в совокупности обозначается одномерным массивом W. Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET.
NET = X[1]*W[1]+X[2]*W[2]+…+X[m]*W[m].
3) Активационные функции
Сигнал NET далее, как правило преобразуется активационной функцией f и дает выходной нейронный сигнал Y. Активационная функция может быть обычной линейной функцией
Y=K(NET), где К – постоянная,
пороговой функцией
Y=1,если NET>T
Y=0, если NET<=T, где T – некоторая постоянная пороговая величина,
логистической (сигмоидальной) функцией, которая осуществляет нелинейную обработку выходного сигнала NET.
Y=1/(1+e(-σNET)).
Данная функция является сжимающей, т.к. при любых значениях NET значения Y принадлежит некоторому конечному интервалу.
[Выступившим ученикам выставить отметки]
3. Изложение новых знаний.
На прошлом уроке мы рассмотрели элементарную единицу нервной системы человека – нейрон, а также рассмотрели его модель. Нейроны объединяются между собой в сети – нейронные сети.
<>Нейронные сети – совокупность взаимодействующих между собой нейронов.
Искусственные нейронные сети позволяют моделировать деятельность нервной системы.
Общее число нейронов в центральной нервной системе человека достигает 1010–1011, при этом каждая нервная клетка связана в среднем с 103–104 других нейронов. Установлено, что в головном мозге совокупность нейронов в объеме масштаба 1 мм3 формирует относительно независимую локальную сеть, которая несет определенную функциональную нагрузку.
Биологические нейронные сети – достаточно сложны по своей структуре. Искусственно создаваемые нейронные сети являются их упрощенными моделями.
Создано множество моделей нейронных сетей, имеющих различную архитектуру.
Первой нейронной сетью был так называемый персептрон Розенблатта. Однослойный персептрон – простейший вид нейронной сети и имеет следующий вид.
Рис. 2
Однослойные сети имеют один слой вычисляющих нейронов, обозначаемых квадратами. Слой нейронов, обозначенных кругами, служит лишь для распределения входных сигналов и поэтому не учитывается при подсчете слоев нейронной сети. Нейронная сеть имеет m входов и n выходов.
Значения входов X можно обозначить одномерным массивом X, а значения выходов одномерным массивом Y.
Каждый элемент из множества входов X соединен отдельным весом с каждым искусственным нейроном. А каждый искусственный нейрон дает взвешенную сумму входов.
Будем считать веса элементами двумерного массива W размерностью m*n. Например, W[3, 2] – это вес, связывающий третий вход со вторым нейроном.
Значения выходов для нейронной сети определяются по формулам
Y[1] = f (X[1] * W[1, 1] + X[2] * W[2, 1] + … + X[m] * W[m, 1]);
Y[2] = f (X[1] * W[1, 2] + X[2] * W[2, 2] + … + X[m] * W[m, 2]);

Y[n] = f (X[1] * W[1, n] + X[2] * W[2, n] + … + X[m] * W[m, n]).
f – это активационная функция.
Пример. Рассчитать значения выходов для данной нейронной сети
Рис 3.
при входных значениях X[1]=6.3, X[2]=-3, X[3]=5.
Активационную функцию принять пороговой, где значение порога равно 10.
Значения весов
W[1,1]=0.5; W[1,2]=7;
W[2,1]=-7; W[2,2]=4.5;
W[3,1]=15; W[3,2]=-10;
Решение
Y[1]= f (6.3*0.5 + (-3)*(-7)+5*15)= f (3.15+21+75) = f (99.15) = 1;
Y[2]= f (6.3*7+(-3)*4.5+5*(-10))= f (44.1-13.5-50) = f (-19.4) = 0;
Т.е. значения выходов данной сети Y[1] и Y[2] равны 1 и 0 соответственно.
Задание на дом. Рассчитать значения выходов для данной сети при входных значениях X[1]=2; X[2]=1; X[3]=-1.
Однослойные персептроны обладают малыми вычислительными возможностями, что ограничивает их использование. Более крупные и сложные нейронные сети обладают, как правило, и большими вычислительными способностями.
Многослойные сети (персептроны) – сети, в которых каждый нейрон слоя связан с каждым нейроном следующего слоя. Многослойные сети рассмотрим на примере двухслойной сети.
Рис. 4
Элементы первого входного слоя не обрабатывают, а только принимают информацию и распространяют ее далее по сети. Значения входов, количество которых равно m обозначим одномерным массивом X. Далее входная информация поступает на внутренний слой. Веса всех нейронов этого слоя формируют двумерный массив W размерностью m*n. Значения выходов внутреннего слоя формируют одномерный массив Z с количеством элементов равным n. Из внутреннего слоя информация поступает на выходной слой. Веса всех нейронов выходного слоя формируют двумерный массив K размерностью n*p. Значения выходов внешнего слоя формируют массив Y с количеством элементов равным p.
Данная сеть имеет m входов и p выходов. Данная сеть является двухслойная, потому что только два слоя нейронов обрабатывают информацию.
Значения выходов нейронов скрытого слоя определяются по формулам
Z[1] = f (X[1] * W[1, 1] + X[2] * W[2, 1] + … + X[m] * W[m, 1]);
Z[2] = f (X[1] * W[1, 2] + X[2] * W[2, 2] + … + X[m] * W[m, 2]);

Z[n] = f (X[1] * W[1, n] + X[2] * W[2, n] + … + X[m] * W[m, n]).
Значения выходов нейронов выходного слоя определяются по формулам
Y[1] = f (Z[1] * K[1, 1] + Z[2] * K[2, 1] + … + Z[n] * K[n, 1]);
Y[2] = f (Z[1] * K[1, 2] + Z[2] * K[2, 2] + … + Z[n] * K[n, 2]);

Y[n] = f (Z[1] * K[1, p] + Z[2] * K[2, p] + … + Z[n] * K[n, p]).
Пример. Рассчитать значения выходов для данной нейронной сети
Рис 5.
при входных значениях X[1]=2, X[2]=-5.
Активационную функцию принять пороговой, где значение порога равно 0.
Значения весов для массива W
W[1,1]=0.5; W[1,2]=-0.2; W[1,3]=0;
W[2,1]=-1; W[2,2]=1.8; W[2,3]=0.3;
для массива K
K[1,1]=2; K[1,2]=0;
K[2,1]=0.4; K[2,2]=-1;
K[3,1]=-2; K[3,2]=4.2.
Решение
Вначале вычислим значения выходов нейронов скрытого слоя
Z[1] = f (2 * 0.5 + (-5) * (-1)) = f (1+5) = f (6) = 1;
Z[2]= f (2 * (-0.2) + (-5) * 1.8) = f (-0.4 + (-9)) = f (-9.4) = 0;
Z[3]= f (2 * 0 + (-5) * 0.3) = f (0 +(-1.5)) = f (-1.5) = 0;
Далее вычислим значения выходов нейронов выходного слоя
Y[1] = f (1 * 2 + 0 * 0.4 + 0 * (-2)) = f (2+0+0) = f(2) = 1;
Y[2] = f (1 * 0 + 0 * (-1) + 0 * 4.2) = f (0 + 0 +0) = f(0) = 0;
Задание на дом. Рассчитать значения выходов для данной нейронной сети при X[1] = -5, X[2]=2.
Добавление новых слоев в нейросети увеличивает ее вычислительные возможности.
4. Задание на дом.
Выучить конспект урока и решить две задачи

Заключение
В данной курсовой работе были выполнены все задачи, обозначенные во введении, благодаря чему авторы достигли поставленной цели – разработки содержания обучения технологии нейронных сетей в профильном курсе информатики.
И, тем не менее, рано говорить о завершенности данного исследования. Результаты данной работы получены теоретически, а особенность влияния изучения темы на мышление школьника носит гипотетический характер. Необходимо апробирование результатов данной работы.
Перед авторами данной работы открываются новые задачи – разработка и проведение эксперимента для подтверждения гипотезы. Только после проведения эксперимента можно будет делать окончательный вывод о практической применимости разработанного содержания обучения технологии нейронных сетей в профильном курсе информатики.

Список литературы
1) Алферов А.Д. Психология развития школьников Учебное пособие по психологии. – Ростов н/Д изд-во «Феникс», 2000. – 384 с.
2) Годфруа Ж. Что такое психология В 2-х т. Т.1 Пер. с франц. – М . Мир, 1996. – 496 с.
3) Информатика Учебник. /Под ред. проф. Н.В. Макаровой. – М. Финансы и статистика, 2000. – 768 с.
4) Концепция профильного обучения на старшей ступени общего образования. – 2002. – 12.
5) Лапчик М.П. и др. Методика преподавания информатики. – М. Издательский центр «Академия», 2001 – 624 с.
6) Нейронные сети. – http //vlasov.iu4.bmstu.ru/book/neurinf2/index.htm
7) Немов Р.С. Психология Учеб. для студентов высш. пед. учеб. заведений В 3 кн. Кн. 1. – М. Гуманит. изд. центр ВЛАДОС, 1997. – 688 с.
8) Немов Р.С. Психология Учеб. для студентов высш. пед. учеб. заведений В 3 кн. Кн. 2. – М. Гуманит. изд. центр ВЛАДОС, 1997. – 608 с.
9) Солсо Р.Л. Когнитивная психология. – Пер. с англ. – М. Тривола, 1996. – 600 с.
10) Терехов С.А. Лекции по теории и приложениям искусственных нейронных сетей. – http //alife.narod.ru/lectures/neural/Neu_index.htm
11) Холодная М.А. Психология интеллекта. Парадоксы исследования. – СПб. Питер, 2002. – 272 с.

«