Интерфейсы как решение проблем множественного наследования

Евгений Каратаев
В этой работе разбирается проблема множественного наследования в языке программирования С++ и возможное ее решение путем применения абстракций интерфейсов.
Множественным наследованием является образование класса путем наследования одновременно нескольких базовых классов. Штука полезная и одновременно с этим проблемная. Разберем пример, в котором появляется множественное наследование, приводящее к проблеме.
Классическим заданием для начинающего программиста является задача написать классы, реализующие иерархию Человек — Студент — Сотрудник. Обычно первым же решением есть образование трех классов в виде
class Человек { … };
class Сотрудник public Человек { … };
class Студент public Человек { … };
В классе Человек декларируются несколько виртуальных и, возможно, абстрактных, функций, которые переопределяются / реализуются в классах-наследниках. Схема на первый взгляд совершенно очевидна и практически ни у кого не вызывает подозрений. Схема реализуется в программе и программа сдается в работу.
Проблема возникает позже, когда оператор приходит и говорит
— У меня есть человек, который одновременно и сотрудник и студент. Что мне делать?
Реализованная схема, вообще говоря, не предполагает такого варианта — могут быть либо сотрудник, либо студент. Но что-то делать надо. В этот момент приходит на помощь множественное наследование. Программист, не долго думая, создает еще один класс, образованный наследованием и от Сотрудник и от Студент
class СтудентСотрудник public Студент, public Сотрудник { …};
На первый взгляд все в порядке, на второй — полный бардак. Дело в том, что класс Сотрудник, как он был декларирован, содержит в себе полную копию класса Человек. То же самое относится и к классу Студент. Таким образом, класс СтудентСотрудник будет содержать в себе уже 2 копии класса Человек. При этом функции класса Сотрудник будут работать со своим экземпляром класса Человек, а функции класса Студент — со своим. В результате корректного поведения добиться практически очень трудно. В классе СтудентСотрудник придется переопределять все функции базовых классов и вызывать соответствующие функции базовых классов, чтобы модификации обеих копий класса Человек прошли когерентно.
Обнаружив такую ситуацию путем тяжелой отладки, программист приходит к необходимости применения виртуального наследования для исключения дублирования класса Человек. Проблема состоит в том, что виртуальное наследование требует модификации графа наследования базовых классов. Требуемая схема имеет вид
class Человек { … };
class Студент virtual public Человек { … };
class Сотрудник virtual public Человек { … };
class СтудентСотрудник public Студент, public Сотрудник { …
};
В этом варианте решена проблема однозначной входимости класса Человек во все классы. Но остается вопрос — не возникнет ли такой же проблемы и дальше с полученным классом СтудентСотрудник? И будет ли возможность произвести модификацию уже работающего кода? В такой ситуации руки могут опуститься — следует либо согласиться с существованием проблемного кода либо действительно идти на полную переработку программы.
Тем не менее элегантное решение существует. Это реализация базовых классов по принципу интерфейсов. Язык С++ не содержит языковой поддержки интерфейсов в явном виде, поэтому будем их эмулировать. Принцип интерфейса состоит в том, что его задачей является не столько реализация класса, сколько его декларация. Нормализуем исходную задачу
class БытьЧеловеком { … };
class БытьСтудентом { … };
class БытьСотрудником { … };
Исходя из нормализованного множества классов, получим дополнение
class Человек public БытьЧеловеком { … };
class Сотрудник public БытьЧеловеком, public БытьСотрудником { … };
class Студент public БытьЧеловеком, public БытьСтудентом { …};
class СтудентСотрудник public БытьЧеловеком, public БытьСтудентом,
public БытьСотрудником { … };
Формально говоря, такая схема построения классов вполне работоспособна за исключением того, что во многих случаях программисты относятся к интерфейсам слишком уж буквально — оставляют в них только абстрактные функции и реализуют эти функции только в классах-наследниках. В результате полностью выхолащивается идея повторного использования кода. Основанием для нереализации функций в интерфейсных классах обычно служит то, что в классе — интерфейсе нет ядра» объекта. В нашем случае ядром объекта или классом, реализующим возможность существования объекта, может выступать класс БытьЧеловеком.
Возможным решением проблемы является передача конструктору интерфейсного класса указателя на конструируемый объект с тем, чтобы его запомнить в своем частном поле данных и использовать при реализации функций интерфейса. Примерно по схеме
class БытьСтудентом
{
БытьЧеловеком& m_БытьЧеловеком;
public
БытьСтудентом( БытьЧеловеком& init)
m_БытьЧеловеком( init)
{ … };
};
class Студент public БытьЧеловеком, public БытьСтудентом
{
public
Студент()
БытьЧеловеком(), БытьСтудентом( *this)
{ …};
};
В этой схеме, согласно стандарту, также есть проблема — стандарт не гарантирует инициализации конструкторов, указанных в списке инициализации, в том порядке, в котором они перечислены в этом списке. Поэтому мы, передавая *this как аргумент конструктора базового класса, получаем ссылку на негарантированно определенный объект. Выйти из этой ситуации можно, если декларировать конструктор без аргументов и создать дополнительную функцию инициализации, зависящую от *this. Но дублирование ссылок, хранимых в интерфейсных классах, тем не менее, сохраняется и это есть некрасиво.
Для решения этой задачи есть чрезвычайно красивое, на мой взгляд, решение. Решение заключается в том, чтобы не хранить ссылку на ядро объекта, а получать ее динамически. Для этого применяется оператор приведения типа dynamic_cast, применяемый не к классу, а к объекту в процессе работы программы. Пример
class БытьСтудентом
{
public
БытьСтудентом(){};
virtual void Func( void);
// пример функции, обращающейся к ядру объекта
{
БытьЧеловеком* ptr = dynamic_cast< БытьЧеловеком* >( this);
if( ptr)
{
// используем ядро
}
};
};
На первый взгляд, приведение типа БытьСтудентом к типу БытьЧеловеком невозможно, поскольку никто их этих классов ни от кого не наследован. Но дело в том, что оператор dynamic_cast определен не для классов, а для объектов. И если при исполнении кода Func реальный объект, для которого эта функция выполняется, имееет класс, унаследованый от БытьЧеловеком, то оператор вернет правильное значение. Согласно стандарту, оператор приведения типа dynamic_cast имеет два вида поведения если приведение невозможно — вернуть нулевое значение либо возбудить исключительную ситуацию. Оба варианта нас полностью устраивают.
Я считаю, что в модели применения интерфейсных классов для решения проблем множественного наследования будет также красиво построить интерфейсные классы с конструкторами, не требующими обращения к ядру объекта. Впрочем, это уже из области философии помехоустойчивого программирования.
«