Доказательство теоремы о представлении дзета-функции Дедекинда

Содержание
Введение
Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле
Глава 2. Вывод функционального уравнения дзета-функции Дедекинда
Заключение
Список используемой литературы
Введение
В данной работе мы рассмотрим теорему о представлении дзета-функции Дедекинда в виде произведения L-функций и пример приложения этой теоремы к выводу функционального уравнения дзета-функции Дедекинда.
Определим некоторые понятия. Пусть k — конечное расширение поля Q, a — некоторый главный идеал поля k. Рассмотрим его разложение на простые идеалы
где для почти всех p.
Через N (a) обозначим абсолютную норму идеала a, т.е. Определим дзета-функцию Дедекинда

Кроме того каждому характеру сопоставим L-ряд

Глава 1. Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле
Докажем следующую теорему
Теорема. Пусть K — конечное абелево расширение поля k; тогда

где произведение справа распространяется на все примитивные характеры, согласованные с характерами группы классов где S — исключительное множество в k, — группа всех идеалов поля k, взаимно простых с S, — подгруппа конечного индекса, образованная теми элементами из, которые содержат нормы относительно k идеалов из K, взаимно простых с S, — подгруппа в подгруппе главных идеалов в, состоящая из таких главных идеалов , для которых и
Доказательство проводится в терминах локальных множителей, причем мы рассмотрим по отдельности неразветвленный и разветвленный случаи.
1. Пусть p — неразветвленный простой идеал из k, т.е.

где — различные простые идеалы в K. Согласно теории полей классов,
где
Поэтому соответствующий локальный множитель слева равен

в то время как соответствующий локальный множитель справа равен

Ввиду того, что f — наименьшее положительное число такое, что для всех, имеет место следующее легко проверяемое тождество

отсюда, если положить, следует нужное равенство.
2. Доказательство для разветвленных простых идеалов сложнее и использует функциональные уравнения, которым удовлетворяют различные L-функции. Начнем с равенства

и докажем, что функциятождественно равна единице. равна произведению конечного числа выражений вида

соответствующих разветвленным идеалам p.
теорема дзета функция дедекинд
Если это произведение непостоянно, оно имеет полюс или нуль в некоторой чисто мнимой точке , где . В силу функционального уравнения представляет собой отношение гамма-функций и, следовательно, имеет только вещественные нули и полюсы. Поэтому , также является полюсом или нулем функции g. Мы знаем, однако, что не является нулем или полюсом ни для L-рядов, ни для функций . Следовательно, g постоянна, а именно равна 1.
Глава 2. Вывод функционального уравнения дзета-функции Дедекинда
Пусть k=Q, K=Q (), где — первообразный корень из 1 степени m, . Тогда
(1)
где — дзета-функция Римана, — L-функция Дирихле, произведение справа распространяется на все неглавные рациональные характеры по модулю m.
Выведем функциональное уравнение
Воспользуемся функциональным уравнением для
,
где сумма Гаусса. Воспользуемся (1), получим
,
,
используя свойство сумм Гаусса, получим
,
.
Пусть для любого вещественного характера , тогда
,
.
Известно, что для каждого комплексного характера существует сопряжённый, тогда получим
,
,
,
.
Используя функциональное уравнение для дзета-функции Римана

получим

где D — дискриминант поля K.
Таким образом мы получили функциональное уравнение для дзета-функции Дедекинда в случае, когда k=Q, K=Q ().

Заключение
В данной работе мы доказали теорему о представлении дзета-функции Дедекинда в виде произведения L-функций и с помощью этой теоремы вывели функциональное уравнение дзета-функции Дедекинда в случае k=Q, K=Q (), где — первообразный корень из 1 степени m.

Список используемой литературы
1. Касселс Дж., Фрёлих А. Алгебраическая теория чисел. — М., Мир», 1969, с.328 — 330

«