Расчет и проектирование привода конвейера

Расчет и проектирование привода конвейера

Расчет и проектирование привода конвейера

Министерство образования Республики Беларусь
Борисовский государственный политехнический колледж
Расчетно-пояснительная записка
к курсовому проекту по «Технической механике»
Тема Расчет и проектирование привода конвейера
Разработал
Коренько А.В.
гр. ТЗ-401, вар.11
Борисов 2007

Содержание
1 Введение
2 Выбор электродвигателя
3 Расчет клиноременной передачи
4 Расчет цепной передачи
5 Расчет закрытой червячной передачи
6 Расчет ведомого вала редуктора
7 Расчет ведущего вала-червяка
8 Подбор подшипников
9 Подбор и проверочный расчет шпонок ведущего вала
10 Подбор и проверочный расчет шпонок ведомого вала
11 Определение конструктивных размеров червячной передачи
12 Компоновочная схема и тепловой расчет редуктора
13 Определение конструктивных размеров крышек подшипников
14 Выбор масла, смазочных устройств
15 Выбор стандартных изделий
Список использованной литературы

1 Введение
Тяговым органом заданного привода является цепная передача В цепных передачах (см. рис.1) вращение от одного вала к другому передается за счет зацепления промежуточной гибкой связи (цепи) с ведущим и ведомым звеньями (звездочками).

Рис.1 Схема цепной передачи с червячным редуктором
В связи с отсутствием проскальзывания в цепных передачах обеспечивается постоянство среднего передаточного числа. Наличие гибкой связи допускает значительные межосевые расстояния между звездочками. Одной цепью можно передавать движение одновременно на несколько звездочек. По сравнению с ременными цепные передачи имеют при прочих равных условиях меньшие габариты, более высокий КПД и меньшие нагрузки на валы, так как отсутствует необходимость в большом предварительном натяжении тягового органа.

Недостатки цепных передач значительный износ шарниров цепи, вызывающий ее удлинение и нарушение правильности зацепления; неравномерность движения цепи из-за геометрических особенностей ее зацепления с зубьями звездочек, в результате чего появляются дополнительные динамические нагрузки в передаче; более высокие требования к точности монтажа передачи по сравнению с ременными передачами; значительный шум при работе передачи.
Цепные передачи предназначаются для мощности обычно не более 100 кВт и могут работать как при малых, так и при больших скоростях (до 30 м/с). Передаточные числа обычно не превышают 7.
Применяемые в машиностроении цепи по назначению подразделяются на приводные, передающие энергию от ведущего вала к ведомому; тяговые, применяемые в качестве тягового органа в конвейерах; грузовые, используемые в грузоподъемных машинах. Из всех типов природных цепей наибольшее распространение имеют роликовые с числом рядов от 1 до 4, втулочные , одно- и двухрядные, и зубчатые.
Кинематическая схема привода конвейера приведена на рис.2.
Вращение привода передается от вала электродвигателя 1 к валу ведомой звездочки 4 цепного конвейера посредством клиноременной передачи и червячного редуктора с нижним расположением червяка 2.

Рис.2 Кинематическая схема привода конвейера.

2 Выбор электродвигателя
Исходные данные
— мощность на ведомой звездочке Р4=3,5 кВт;
— число оборотов на ведомой звездочке п4=35 об/мин;
— работа двухсменная;
— нагрузка спокойная нереверсивная.
Определяем общий КПД привода по схеме привода
ηобщ=η1 η2 η3 η0 (2.1)
где [1, с.5, табл.1.1] η1=0,97- КПД ременной передачи;
η2=0,72 — КПД закрытой червячной передачи с однозаходним червяком;
η3=0,95 — КПД цепной передачи;
η0=0,992- коэффициент, учитывающий потери на трение в опорах 2-х валов.
Сделав подстановку в формулу (2.1) получим
ηобщ.=0,97*0,72*0,95*0,992=0,65
Определяем мощность, необходимую на входе [1,с.4]
Ртр=Р4/ηобщ. (2.2)
где Ртр – требуемая мощность двигателя
Ртр=3,5/0,65=5,38кВт
Выбираем электродвигатель [1,с.390,табл. П1,П2]
Пробуем двигатель 4А112М4
Рдв.=5,5кВт;
nс=1500об/мин;
S=3,7%
dдв.=32мм.
Определяем номинальную частоту вращения электродвигателя по формуле (1.3) [1,c.6]
nном=nc·(1-S);
nном=1500·(1-0,037);
nном=1444,5 об/мин
Определяем общее передаточное число привода
U=nном./n4=1444,5/35=41,3
Производим разбивку передаточного числа по ступеням. По схеме привода
Uобщ.=U1· U2· U3; (2.3)
Назначаем по рекомендации [1,табл.1.2] U1=2; U2=10;
Тогда
U3= Uобщ./( U1· U2);
U3=2,06, что входит в рекомендуемые пределы
Принимаем U3=2.
Тогда уточняем передаточное число привода по формуле (2.3)
Uобщ.=2*10*2=40
Принимаем окончательно электродвигатель марки 4А112М4
Угловые скорости определяем по формуле
ω=πn/30 (2.4)
По формуле (2.4) определяем угловую скорость вала двигателя
ωдв=πnдв/30=π*1444,5/30=151,3рад/с;
По схеме привода (рис.2) и формуле (2.4) определяем частоты вращения и угловые скорости каждого вала
n2= nдв/U1=1444,5/2=722,3об/мин;
ω2=πn2/30=π*722,3/30=75,6 рад/с;
n3= n2/U2=722,3/10=72,2 об/мин;
ω3=πn3/30=π*72,2/30=7,6 рад/с;
n4= n3/U3=72,2/2=36,1 об/мин;
ω4=πn4/30= π*36,1/30=3,8 рад/с.
Определяем мощность на каждом валу по схеме привода
Р2=Рдв η1=5,5*0,97=5,335 кВт;
Р3=Р2 η2 η0=5,335*0,72*0,992=3,764 кВт;
Р4=Р3 η3=5,124*0,95=3,576 кВт,
что близко к заданному.
Определяем вращающие моменты на каждом валу привода по формуле
(Нм) (2.5)
;
;
;
.
Все рассчитанные параметры сводим в табл.1.
Таблица 1
Параметры кинематического расчета

№ вала
n, об/мин
ω, рад/с
Р, кВт
Т, Нм
U

Дв. (1)
1444,5
151,27
5,5
36,35
2

2
722,3
75,6
5,335
70,57

10

3
72,2
7,6
3,764
495,3

2

4
36,1
3,8
3,576
941

3 Расчет клиноременной передачи

Исходные данные
Мощность на валу меньшего шкива Р1=Рдв =5,5 кВт
Вращающий момент на меньшем шкиве Т1=36,35 Нм
Передаточное число U=3
Частота вращения меньшего шкива nдв=1444,5 об/мин
Угловая скорость вращения меньшего шкива ωдв=151,27 рад/с
По мощности и частоте вращения меньшего шкива выбираем сечение «А» клинового ремня [3,табл.2.1]. Для наглядности, используя ГОСТ1284.1-80 размеры ремня сводим в табл.2.
Таблица 2
Размеры клинового ремня

Наименование
Обозначение
Величина

Обозначение ремня
А

Диаметр меньшего шкива, мм
d1
125

Ширина большего основания ремня, мм
W
13

Расчетная ширина ремня, мм

11

Высота ремня, мм
Т0
8

Площадь поперечного сечения, мм2
А
81

Угол клина ремня, °
α
40

Расчетная длина ремня, мм

560…4000

Масса одного метра, кг
q
0,105

Определяем диаметр большего шкива
d2=d1хUх(1-ε) (3.1)
где ε=0,01 – относительное скольжение ремня для передач с регулируемым натяжением ремня.
Подставив значения в формулу (3.1) получим
d2=125х2х0.99=247,5мм
Округляем до ближайшего значения из стандартного ряда
d2=250мм
Рассчитываем уточненное передаточное отношение
U1=d2/d1=250/125=2, т.е. оно не изменилось.
Назначаем межосевое расстояние в интервале (мм)
аmin=0,55Т0=0,55(125+250)+8=206,25мм
аmax=(d1+ d2)= 125+250=375мм
Принимаем а=300мм
Вычисляем длину ремня
Lр=2а+0,5π(d1+ d2)+ (d1+ d2)2/4а
Lр=2х300+0,5х3.14(125+250)+(125+250)2/1200=1306мм
Принимаем из стандартного ряда Lр =1320мм. Ввиду очень близкого округления длины ремня нет необходимости пересчитывать межосевое расстояние.
Рассчитываем угол обхвата меньшего шкива
α1=180-57(d2 -d1)/а
α1=180-57(250-125)/300=156º
Рассчитываем скорость ремня
;
где [ν]=25м/с – допускаемая скорость для клиновых ремней,
м/с.
Находим необходимое для передачи число ремней
(3.2)
где Р0=2 кВт – мощность, допускаемая для передачи одним ремнем «А» с диаметром меньшего шкива 125мм и скоростью ремня 10м/с [3,табл.2.4];
СL=0,95 — коэффициент, учитывающий влияние длины ремня [3,табл.2.5];
Ср=1,2 — коэффициент динамичности нагрузки и режима работы (при среднем режиме работы, при двухсменой работе) [3,табл.2.6];
Сα=0,93 — коэффициент, учитывающий влияние угла обхвата на тяговую способность ремня;
Сz=0,9 — коэффициент, учитывающий число ремней в комплекте (при z=4-6). Подставив значения в формулу (3.2) получим
ремня
Проверим частоту пробегов ремня Uпр=ν/Lр≤[Uрек]
где [Uрек]=30c-1 – рекомендованное значение частоты пробегов для клиноременной передачи.
Uпр=9,5/1,8=5,3с-1.
Определяем силу предварительного натяжения одного клинового ремня

где Сl=1 – коэффициент влияния отношения расчетной длины ремня к базовой;

Определяем окружную силу, передаваемую комплектом ремней
Ft=Р1х103/ν=5500/9,5=579Н.
Определяем силы натяжения ведущей и ведомой ветвей одного клинового ремня

Определяем силу давления ремня на вал
Fоп=2F0*z *sinα1/2=2х110х4хsin78°=861Н
Параметры клиноременной передачи заносим в табл.3.

Таблица 3
Параметры клиноременной передачи

Параметр
Обозначение
Значение

Тип ремня

А

Количество ремней, шт
z
4

Межосевое расстояние, мм
а
300

Скорость ремня, м/с
ν
9,5

Частота пробегов ремня, с-1
Uпр
5,3

Диаметр ведущего шкива, мм
d1
125

Диаметр ведомого шкива, мм
d2
250

Предварительное натяжение, Н
F0
110

Окружная сила, Н
Ft
579

Сила давления ремня на вал, Н
Fоп
861

4 Расчет цепной передачи

Исходные данные
— передаточное число U3=2;
— вращающий момент на ведущей звездочке Т3=495,3Нм;
— частота вращения ведущей звездочки n3=72,2 об/мин
— угловая скорость ω3=7,6 рад/с.
Вычисляем число зубьев на ведущей и ведомой звездочке
z3=31-2U3;
z4= z3хU3;
z3=31-2х2=27
z4=27х2=54
Рассчитываем коэффициент эксплуатации [3,c.277]
Кэ=кД х ка х кН х кР х кСМ х кП;
где кД =1 – динамический коэффициент при спокойной нагрузке;
ка =1 – коэффициент, учитывающий влияние межосевого расстояния (при а≤(30…60)хt);
кН =1 — коэффициент, учитывающий влияние угла наклона линии центров(угол не превышает 60º);
кР =1,25 – при периодическом регулировании натяжения цепи;
кСМ =1 – при капельной смазке;
кП=1,25 – коэффициент, учитывающий продолжительность работы в сутки, при двухсменной работе.
Кэ=1х1х1х1,25х1х1,25=1,56
Определяем шаг цепи

где [pн]=22МПа – допускаемое давление в шарнирах цепи (при частоте вращения ведущей звездочки до 300об/мин и шаге цепи 19,05);
ι=2 – число рядов цепи типа ПР.

Принимаем р=25,4мм, выбираем цепь 2ПР-25,4-11400 [3,табл.3.1], параметры цепи заносим в табл.4. Обозначения параметров см. рис.3.

Рис.3 Рисунок роликовой цепи
Таблица 4
Параметры приводной роликовой двухрядной цепи

Параметр
Обозначение
Значение

Шаг, мм
t
25,4

Расстояние между пластинами внутреннего звена, мм
Ввн
15,88

Диаметр оси ролика, мм
d
7,92

Диаметр ролика, мм
d1
15,88

Высота цепи, мм
h
24,2

Ширина цепи, мм
b
68

Расстояние между плоскостями, проходящими через оси роликов, мм
А
29,29

Разрушающая нагрузка, кН
Q
11400

Масса одного метра цепи, кг/м
q
5

Параметр, озн. проекцию опорной поверхности, мм2
Аоп
211

Определяем скорость цепи
;
.
Определяем окружную силу
;
.
Определяем давление в шарнире
;
;
Уточняем значение [рН] = 22 МПа [3,табл.3.3] и проверяем условие
;
;
Условие выполнено, т.е. ;
Выполнив приведенные расчеты, мы исключили разрыв и быстрый износ выбранной цепи.
Определяем длину цепи в шагах
;
;
где а=30хt= 30х25,4=762мм — оптимальное межосевое расстояние передачи, принятое из условия долговечности цепи.
Уточняем межосевое расстояние
;
;
Для свободного провисания цепи предусматривается возможность уменьшения межосевого расстояния на 0,4%, т.е. на .
Определяем диаметры делительных окружностей звездочек
;
;
;
Определяем диаметры наружных окружностей звездочек
;
;
;
где d1 = 15,88 мм; [см выше табл. 4].
Определяем силы, действующие на цепь
Окружная сила
От центробежных сил
;
;
От провисания
;
;
где kf=1,5 – коэффициент, учитывающий расположение цепи, в данном случае принят для наклонной цепи, под углом 45°.
Рассчитываем расчетную нагрузку на валы
;

Проверяем коэффициент запаса прочности
;
;
Условие выполняется, т.е. ;
где [s] = 8,4 – нормативный коэффициент запаса прочности, при выборе зависящий от шага цепи и частоты вращения ведущей звездочки [3,табл.3.4];
Параметры цепной передачи заносим в табл.5.
Таблица 5
Параметры цепной передачи

Параметр
Обозначение
Значение

Скорость цепи, м/с
ν
8,25

Межосевое расстояние, мм
аЦ
760

Диаметры делительных окружностей, мм ведущей звездочки ведомой звездочки
dД3 dД4
219 437

Диаметры наружных окружностей, мм ведущей звездочки ведомой звездочки
Dе3 Dе4
230,3 449

Окружная сила, Н
Ft3
378

Центробежная сила, Н
Fv3
340

Сила от провисания, Н
Ff3
56

Нагрузка на вал, Н
FВ3
490

5 Расчет закрытой червячной передачи

5.1 Исходные данные
Передаточное отношение
Мощность на валу червяка
Момент на червяке
Число оборотов червяка
Угловая скорость червяка
5.2 Выбор материала червяка и червячного колеса
Для червяка с учетом мощности передачи выбираем [1, c.211] сталь 45 с закалкой до твердости не менее HRC 45 и последующим шлифованием.
Марка материала червячного колеса зависит от скорости скольжения

м/с
Для венца червячного колеса примем бронзу БрА9Ж3Л, отлитую в кокиль.
5.3 Предварительный расчет передачи
Принимаем допускаемое контактное напряжение [1,табл.5.4] [σн] = 173МПа.
Число витков червяка Z1 принимаем в зависимости от передаточного числа.
При U = 10 принимаем Z1 = 4.
Число зубьев червячного колеса Z2 = Z1 x U = 4 x 10 = 40.
Принимаем предварительно коэффициент диаметра червяка q = 10;
Коэффициент нагрузки К = 1,2;
Определяем межосевое расстояние [1, c.61]
(5.1)

Вычисляем модуль
(5.2)

Принимаем по ГОСТ2144-76 (таблица 4.1 и 4.2) стандартные значения m = 4, q = 10, а также Z2 = 40 Z1 = 4. Тогда пересчитываем межосевое расстояние по стандартным значениям m, q и Z2

Принимаем aw = 100 мм.

5.4 Расчет геометрических размеров и параметров передачи
Основные размеры червяка
Делительный диаметр червяка

Диаметры вершин и впадин витков червяка

Длина нарезной части шлифованного червяка [1]

Принимаем b1=42мм
Делительный угол подъема Y [1, табл. 4.3] при Z1 = 4 и q =10; принимаем Y = 21 º48’05” ha=m=4мм; hf=1,2x m=4,8мм; c=0,2x m=0,8мм.
Основные геометрические размеры червячного колеса [1]
Делительный диаметр червячного колеса

Диаметры вершин и впадин зубьев червячного колеса

Наибольший диаметр червячного колеса

Ширина венца червячного колеса

Принимаем b2=32мм
Окружная скорость

червяка —
колеса —
Скорость скольжения зубьев [1, формула 4.15]

КПД редуктора с учетом потерь в опорах, потерь на разбрызгивание и перемешивания масла [1, формула 4.14]

Уточняем вращающий момент на валу червяка

По [1, табл. 4.7] выбираем 7-ю степень точности передачи и находим значение коэффициента динамичности Kv = 1,1.
Коэффициент неравномерности распределения нагрузки [1,формула 4.26]

В этой формуле коэффициент деформации червяка при q =10 и Z1 =4 [1,табл. 4.6]
При незначительных колебаниях нагрузки вспомогательный коэффициент Х=0,6

Коэффициент нагрузки

5.5 Проверочный расчет
Проверяем фактическое контактное напряжение

МПа < [GH] = 173МПа.
Проверяем прочность зубьев червячного колеса на изгиб.
Эквивалентное число зубьев.

Коэффициент формы зуба [1, табл. 4.5] YF = 2,19
Напряжение изгиба

Па = 16,2 МПа
Определяем основное допускаемое напряжение изгиба для реверсивной работы , где -коэффициент долговечности, принимаем по его минимальному значению =0,543/1,с.67/;
Таким образом, =98*0,543=53,21МПа. Прочность обеспечена, т. к. < .
Определяем окружные Ft, осевые Fa и радиальные Fr силы в зацеплении соответственно на червяке и на колесе по формулам

Все вычисленные параметры заносим в табл.6.
Таблица 6
Параметры червячной передачи

Параметр
Колесо
Червяк

m
4

z
40
4

ha,мм
4

hf,мм
4,8

с, мм
0,8

d, мм
160
40

dа, мм
168
48

df, мм
150,4
30,4

dаm, мм
172

b, мм
32
42

γ
21º48’05”

V, м/с
0,6
1,5

Vs, м/с
1,6

Ft, Н
6191
2615

Fa, Н
2615
6191

Fr, Н
2252

6 Расчет ведомого вала редуктора

6.1 Исходные данные

Исходные данные выбираем из табл.3,5,6 с округлением до целых чисел
Н;
Н;
Н;
FВ3=490Н – нагрузка от цепи на вал под углом 45°;
Т3=495,3Н;
d=160мм;
b=32мм.
По кинематической схеме привода составляем схему усилий, действующих на валы редуктора.

Рис.4 Схема усилий, действующих на валы червячного редуктора

6.2 Выбор материала вала

Назначаем материал вала. Принимаем сталь 45, для которой [1, табл.8.4] σв = 890 Н/мм2. Определяем пределы выносливости материала вала при симметричном цикле изгиба и кручения
; ;
; Н/мм2;
; Н/мм2.
6.3 Определение размеров вала
Определяем диаметр выходного конца вала под ступицей звездочки из расчёта на чистое кручение
(6.1)
где [τк]=(20…30)Мпа [1,c.161]
Принимаем [τк]=25Мпа.
Диаметр выходного конца

Принимаем ближайшее большее значение из стандартного ряда d1 =50мм.
Намечаем приближенную конструкцию ведомого вала редуктора (рис.5)

Рис.5 Приближенная конструкция ведомого вала
Диаметры подшипниковых шеек d2 =d1+2t=50+2х2,8=55,6мм
Принимаем d2 =60мм
Диаметр под ступицу червячного колеса d3= d2 +3,2r=60+3,2х3=69,6мм
Принимаем d3 =71мм
Диаметр буртика
d5= d3 +3,2r=71+9,6=80мм
l1 =(1,0…1,5)d1 =1,2х50=60мм
l2≈1,25d2 =1,25х60=75мм
l3 =(0,8..1)хdam=170мм
Предварительно выбираем подшипник 7512 ГОСТ333-79 с внутренним диаметром 60мм, наружным 110мм, шириной 20мм. l4 =22мм.
6.4 Расчет ведомого вала на изгиб с кручением
Для построения эпюр с учетом рис.5 определяем расстояния прилагаемых сил (рис.6).
a=b=l3/2=85мм;
с=l1/2+l2-10=95мм;
d=160мм.

Рис.6 Компоновочный эскиз вала
Заменяем вал балкой на опорах в местах подшипников.
Силу давления цепной передачи на вал FВ раскладываем на составляющие в осях х и у
FВх= FВy= FВcos45°=346,5Н.
Рассматриваем вертикальную плоскость (ось у)
Изгибающий момент от осевой силы Fа будет mа=[Fa×d/2] mа=2615·160×10-3/2; mа=209Н×м.
Определяем реакции в подшипниках в вертикальной плоскости.
1åmАу=0
-RBy·(a+b)+Fr·a+ mа-FВу(a+b+c)=0
RBy=(-FВу(a+b+c)+Fr·а+ mа)/ (a+b);
RBy= (-346,5·0,265+2252·0,085+209)/ 0,17;
RBy==436,5Н
2åmВу=0
RАy·(a+b)-Fr·b- mа+FВу(a+b+c)=0
RАy==(-FВу·c-+Fr·b+ mа)/ (a+b);
RАy =(-346,5·0,095+2252·0,085+209)/ 0,17;
RАy =2162Н
Проверка åFКу=0
RАy -Fr+ RBy -FВу =2162-2252+436,5-346,5=0
Назначаем характерные точки 1,2,2’,3 и 4 и определяем в них изгибающие моменты
М1у=0;
М2у=-RАy·а;
М2у=-2162·0,085;
М2у =-184Нм;
М2’у= М2у -mа (справа);
М2’у=-184-209;
М2’у =-293Нм;
М3у=FВу·с;
М3у=346,5·0,095=33Нм;
М4у=0;
Строим эпюру изгибающих моментов Му, Нм (рис.7)
Рассматриваем горизонтальную плоскость (ось х)
1åmАх=0;
-FВх·(a+b+с)-RВх·(a+b)+ Ft·a=0;
-346,5·(0,085+0,085+0,095)-RВх·(0,085+0,085)+6196·0,085=0;
RВх=434,8/0,17; RВх=2558Н
2åmВх=0;
RАх·(a+b)-Ft·b-FВх·с= 0;
RАх=(6191×0,085+346,5×0,095)/0,17;
RАх=3286,5Н
Проверка åmКх=0;
RАх- Ft +FВх+RВх=2558-6191+346,5-3286,5=0
Назначаем характерные точки 1,2,2’,3 и 4 и определяем в них изгибающие моменты
М1х=0; М2х= -RАх·а;
М2х=-3286,5·0,085;
М2х=-279Нм; М3х=-FВх ·с;
М3х=-346,5·0,095;
М3х=-33Нм, М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
ТI-I=0; ТII-II=T1=Ft·d/2;
ТII-II=6191×160×10-3/2; ТII-II=495Нм.

Рис.7 Эпюры изгибающих и крутящих моментов ведомого вала.

6.5 Расчет коэффициента запаса прочности
В соответствии с рис.7 наиболее опасным является сечение 2-2, в котором имеются концентраторы напряжений от посадки червячного колеса с натягом, шпоночного паза и возникают наибольшие моменты.
Исходные данные для расчета
М2’у=293Нм;
М2х=279Нм;
Т2-2=495Нм;
d=71мм;
в=20мм – ширина шпонки,
t=7,5мм – глубина шпоночного паза.
При расчете принимаем, что напряжения изгиба изменяются по симметричному циклу, а напряжения кручения – по отнулевому циклу.
Определяем результирующий изгибающий момент
Нм.
Определяем напряжения изгиба
σи=Ми/W;
где W – момент сопротивлению изгибу. По [1,табл.22.1]
мм3
σи=404000/30880=13Н/мм2.
При симметричном цикле его амплитуда равна σа= σи =95Н/мм2.
Определяем напряжения кручения τк=Т2-2/Wк; где Wк – момент сопротивлению крученю. По [1,табл.22.1]
мм3
τк=495000/65025=7,6Н/мм2.
При отнулевом цикле касательных напряжений амплитуда цикла равна
τа= τк /2=7,6/2=3,8 Н/мм2.
Согласно примечанию к табл. 0.2 [3] в расчет принимаем концентрацию напряжений от посадки зубчатого колеса, для которой по табл.0.5 [3] (интерполируя) Кσ/Кν=3,9; Кτ/Кd=2,8. По табл. 0.3…0.4 [3] КF=1,0 – для шлифованной посадочной поверхности; Кν=1,0 – поверхность вала не упрочняется. Определяем коэффициенты концентрации напряжении вала
(Кσ)D=( Кσ/Кν+ КF-1)/ Кν=(3,9+1-1)/1=3,9;
(Кτ)D=( Кτ/Кν+ КF-1)/ Кν=(2,8+1-1)/1=2,8.
Определяем пределы выносливости вала
(σ-1)D=σ-1/(Кσ)D=383/3,9=98,2 Н/мм2;
(τ-1)D=τ-1/(Кτ)D=222/2,8=79,3 Н/мм2.
Определяем коэффициенты запаса прочности
sσ=(σ-1)D/ σа=98,2/13=7,5;
sτ=(τ-1)D/ τа=79,3/3,8=20,8.
Определяем расчетный коэффициент запаса по нормальным и касательным напряжениям

Сопротивление усталости вала в сечении 3-3 обеспечивается.

7 Расчет ведущего вала редуктора-червяка

7.1 Исходные данные
Исходные данные выбираем из табл.3,5,6 с округлением до целых чисел
Н;
Н;
Н;
Н;
Т2=116,3Н;
d=83,33мм;
b=40мм.
Схема усилий приведена на рис.4.
7.2 Определение диаметров вала
Ведущий вал – червяк (см.рис.8)

Рис.8 Эскиз червяка
Диаметр выходного конца при допускаемом напряжении (согласно табл. 7.1 [2])

По ГОСТ принимаем d1 =25мм
Диаметры подшипниковых шеек d2 =d1+2t=25+2х2,2=29,9мм
Принимаем d2 =30мм d3≤df1=47,88
Принимаем d3 =40мм
l1 =(1,2…1,5)d1 =1,4×25=35мм
l2≈1,5d2 =1,5×30=45мм
l3 =(0,8…1)хdam=170мм
l4 – определим после выбора подшипника
7.3 Эскизная компоновка ведущего вала
Назначаем предварительно подшипники шариковые радиально-упорные однорядные средней серии по мм подшипник №36307, у которого Dп=80мм; Вп=21мм [1,c.394, табл.П3].
Выполняем эскизную компоновку вала редуктора. Необходимо определить длину вала L и расстояния от середины подшипников до точек приложения нагрузок a, b и с (рис.6).
Принимаем
lст=b+10мм – длина ступицы колеса
lст=40+10=50мм;
(30…50)мм — расстояние от торца подшипника до торца ступицы шкива.
Принимаем 40мм. lш=60мм — длина ступицы шкива.
Определяем размеры а, b, с и L.
а=b=Вп/2+е+К+lст/2;
а=b=21/2+10+10+50/2;
а=b=55,5мм
Принимаем а=b=55мм.
с= Вп/2+40+lш/2;
с=21/2+40+60/2;
с=80,5мм
Принимаем с=80мм.
L=Вп/2+a+b+c+ lзв/2;
L=21/2+55+55+80+60/2;
L=230,5мм;
Принимаем L=235мм.
7.4 Расчет ведущего вала на изгиб с кручением

Заменяем вал балкой на опорах в местах подшипников.
Рассматриваем вертикальную плоскость (ось у)
Изгибающий момент от осевой силы Fа будет
mа=[Fa×d/2]
mа=6191·40×10-3/2;
mа≈124Н×м.
Определяем реакции в подшипниках в вертикальной плоскости.
1åmАу=0
RBy·(a+b)-Fr·a- mа=0
RBy=(Fr·а+ mа)/ (a+b);
RBy= (2252·0,055+124)/ 0,11;
RBy==2253Н
2åmВу=0
RАy·(a+b)+Fr·b- mа=0
RАy==(-Fr·b mа)/ (a+b);
RАy =(2252·0,055+124)/ 0,11;
RАy =1Н
Проверка åFКу=0
RАy- Fr — RBy=1-2252+2253=0
Назначаем характерные точки 1,2,2’,3 и 4 и определяем в них изгибающие моменты
М1у=0;
М2у= -RАy·а;
М2у=-1·0,055;
М2у =-0,05Нм;
М2’у= М2у- mа(справа);
М2’у=-0,05-124;
М2’у =-124Нм;
М3у=0;
М4у=0;
Строим эпюру изгибающих моментов Му, Нм (рис.9)
Рассматриваем горизонтальную плоскость (ось х)

Рис.8 Эпюры изгибающих и крутящих моментов ведущего вала.
1åmАх=0;
-FОп·(a+b+с)-RВх·(a+b)+Ft·a=0;
-861·(0,055+0,055+0,08)+RВх·(0,055+0,055)-2615·0,055=0;
RВх=307,4/0,11;
RВх»2795Н
2åmВх=0;
RАх·(a+b)-Ft·b-Fоп·с= 0;
RАх=(2615×0,055+861×0,08)/0,11;
RАх»1934Н
Назначаем характерные точки 1,2,3 и 4 и определяем в них изгибающие моменты
М1х=0;
М2х= -RАх·а;
М2х=-1934·0,055;
М2х=106Нм;
М3х= FОп ·с;
М3х=861·0,08;
М3х=69Нм
М4х=0;
Строим эпюру изгибающих моментов Мх.
Крутящий момент
ТI-I=0;
ТII-II=T1=Ft·d/2;
ТII-II=2615×40×10-3/2;
ТII-II=52Нм.
Так как значения изгибающих и крутящих моментов значительно меньше, чем у ведомого вала расчет вала на прочность не проводим.

8 Подбор подшипников

8.1 Расчет подшипников червяка на долговечность

Исходные данные
n2=722мин-1;
dп3=30мм;
RАy=1Н;
RАх=1934Н;
RBy=2252Н;
RВх=2791Н;
Н.
Определяем радиальные нагрузки, действующие на подшипники
; (12.1)
;
Здесь подшипник 2 – это опора А в сторону которой действует осевая сила Fа (рис.9).
;
;
Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)
;
;
Так как соотношение больше 0,35, то назначаем роликовый конический однорядный подшипник средней серии по dп3=30мм.
Подшипник № 7306, у которого
Dn2=72мм;
Вn2=21мм;
С0=40кН – статическая грузоподъемность;
С=29,9кН – динамическая грузоподъемность
е=0,34 – коэффициент осевого нагружения;
У=1,78 – коэффициент при осевой нагрузке [1,c.402, табл.П7].
Определяем коэффициент Х при радиальной нагрузке [1,c.212, табл.9.18] в зависимости от отношения
;
где V – коэффициент вращения, при вращении внутреннего кольца V=1.

Тогда Х=0,4.
Изображаем схему нагружения подшипников. Подшипники устанавливаем враспор.

Рис.9 Схема нагружения вала-червяка
Определяем осевые составляющие от радиальных нагрузок
S=0,83×e×Fr [1,c.216]
S1=0,83×0,34×3587;
S1=1012Н;
S2=0,83×0,34×1934;
S2=546Н.
Определяем осевые нагрузки, действующие на подшипники.
FaI=S1;
FaII=S2 +FaI;
FaI=1012Н;
FaII=546+1012;
FaII=1558Н.
Определяем эквивалентную нагрузку наиболее нагруженного подшипника II
Fэ2=(Х×V×Fr2+У×FaII)×Kd×Kτ;
где Kd — коэффициент безопасности;
Kd =1,3…1,5 [1,c.214, табл.9.19];
принимаем Kd =1,5;
Kτ – температурный коэффициент;
Kτ =1 (до 100ºС) [1,c.214, табл.9.20];
Fэ2=(0,4×1×1934+1,78×1558)×1,5×1; Fэ2=5146Н≈5,2кН
Определяем номинальную долговечность роликовых подшипников в часах
[1,c.211]; (12.2)
Подставляем в формулу (12.2)
; ч.
По заданию долговечность привода 3 года при двухсменной работе Lhmin=260х8х2х3=12500ч.
В нашем случае Lh> Lhmin, принимаем окончательно для червяка подшипник 7306.
8.2 Расчет подшипников тихоходного вала на долговечность
Исходные данные
n2=72,2мин-1;
dп3=60мм;
RАy=2162Н;
RАх=3286Н;
RBy=436Н;
RВх=2558Н;
Н.
Определяем радиальные нагрузки, действующие на подшипники (12.1)
;
Здесь подшипник 2 – это опора А в сторону которой действует осевая сила Fа (рис.10).
;
;
Назначаем тип подшипника, определив отношение осевой силы к радиальной силе того подшипника, который ее воспринимает (здесь подшипник 2)
;
;
Так как соотношение больше 0,35, то назначаем роликовый конический однорядный подшипник средней серии по dп3=60мм.
Подшипник № 7512, у которого
Dn2=110мм;
Вn2=30мм;
С0=94кН – статическая грузоподъемность;
С=75кН – динамическая грузоподъемность
е=0,392 – коэффициент осевого нагружения;
У=1,528 – коэффициент при осевой нагрузке [1,c.402, табл.П7].
Определяем коэффициент Х при радиальной нагрузке [1,c.212, табл.9.18] в зависимости от отношения

где V – коэффициент вращения, при вращении внутреннего кольца V=1.

Тогда Х=0,4. Подшипники устанавливаем враспор.
Определяем осевые составляющие от радиальных нагрузок
S=0,83×e×Fr [1,c.216]
S1=0,83×0,392×2595; S1=844Н;
S2=0,83×0,392×3933; S2=1280Н.
Определяем осевые нагрузки, действующие на подшипники.
FaI=S1;
FaII=S2 +FaI;
FaI=844Н;
FaII=844+1280;
FaII=2124Н.
Определяем эквивалентную нагрузку наиболее нагруженного подшипника II
Fэ2=(Х×V×Fr2+У×FaII)×Kd×Kτ;
где Kd — коэффициент безопасности;
Kd =1,3…1,5 [1,c.214, табл.9.19];
принимаем Kd =1,5;
Kτ – температурный коэффициент;
Kτ =1 (до 100ºС) [1,c.214, табл.9.20];
Fэ2=(0,4×1×3933+1,78×2124)×1,5×1;
Fэ2=8030Н=8,03кН
Определяем номинальную долговечность роликовых подшипников в часах
[1,c.211]; (12.2)
Подставляем в формулу (12.2)
; ч.
По заданию долговечность привода Lhmin=12500ч.
В нашем случае Lh> Lhmin, принимаем окончательно для червяка подшипник 7512.

9. Подбор и проверочный расчет шпонок ведущего вала
Выбор и проверочный расчет шпоночных соединений проводим по [3].

Рис.10 Сечение вала по шпонке
Для выходного конца быстроходного вала при d=25 мм подбираем призматическую шпонку со скругленными торцами по ГОСТ23360-78 bxh=8×7 мм2 при t=4мм (рис.10).
При длине ступицы шкива lш=35 мм выбираем длину шпонки l=32мм.
Материал шпонки – сталь 45 нормализованная. Напряжения смятия и условия прочности определяем по формуле
(9.1)
где Т – передаваемый момент, Н×мм; ТII=70570Н×мм
lр – рабочая длина шпонки, при скругленных концах lр=l-b,мм;
[s]см – допускаемое напряжение смятия.
С учетом того, что на выходном конце быстроходного вала устанавливается шкив из ст.3 ([s]см=110…190 Н/мм2) вычисляем

Условие выполняется.

10. Подбор и проверочный расчет шпонок ведомого вала
Передаваемый момент Т3=232Нм=495300Нмм.
Для выходного конца тихоходного вала при d=50 мм подбираем призматическую шпонку со скругленными торцами bxh=14×9 мм2 при t=5,5мм.
При l1=60 мм выбираем длину шпонки l=45мм.
Материал шпонки – сталь 45 нормализованная. Проверяем напряжение смятия, подставив значения в формулу (9.1).

Условие выполняется.
Для соединения тихоходного вала со ступицей червячного колеса при d=71 мм подбираем призматическую шпонку со скругленными торцами bxh=20×12 мм2 при t=7,5мм.
При l1=32 мм выбираем длину шпонки l=32мм.
Материал шпонки – сталь 45 нормализованная. Проверяем напряжения смятия и условия прочности с учетом материала ступицы чугуна СЧ20 ([s]см=70…100 МПа) и Т2=748 Н×мм

Условие выполняется.
Выбранные данные сведены в табл.6.

Таблица 6
Параметры шпонок и шпоночных соединений

Параметр
Вал-шкив
Вал-полумуфта
Вал-колесо

Ширина шпонки b,мм
8
14
20

Высота шпонки h,мм
7
9
12

Длина шпонки l,мм
32
45
32

Глубина паза на валу t1,мм
4
5,5
7,5

Глубина паза во втулке t2,мм
3,3
3,8
4,9

11. Определение конструктивных размеров червячной передачи
Длины ступиц и внутренние диаметры определены ранее. Наружные диаметры ступиц определяем по формуле
dст=1,55d;
dст=1,55х71=110мм
Учитывая, что диаметр впадин df=150,4мм конструкцию червячного колеса принимаем биметаллической, т.е. колесо без обода из серого чугуна, а венец – из бронзы БрА9Ж3Л. Определяем конструктивные размеры частей (см. рис.11).

Рис.11 Конструктивные размеры червячного колеса d=(0,4…0,5)b=0,5х32=16мм, h=(0,3…0,4)d=5мм
Размеры фасок венца и ступицы выбираем в зависимости от их диаметров.
fо=2,5мм (для d=110…164мм), fст=2,0мм (для d=71мм)
Принимаем α=45º, γ=0°

12. Компоновочная схема и тепловой расчет редуктора
По рассчитанным и выбранным размерам строим компоновочную схему редуктора (рис.12) и определяем основные размеры корпуса.
Производим тепловой расчет, суть которого сводится к тому, чтобы температура масла в картере редуктора не превышала допускаемого значения [t м]=80…90ºС.
tм=tв+Р1(1-η)/(КtА)≤ [t м] (12.1)
где tв — температура воздуха вне корпуса, °С; в цеховых условиях t м=20ºС;
Р1=5335 — мощность на червяке, Вт;
η=0,85 — КПД редуктора с 4-хзаходним червяком;
Кt — коэффициент теплоотдачи, зависящий от материала корпуса редуктора и интенсивности вентиляции помещения. Для чугунных корпусов принимают Кt =8. . .17 Вт/(м2· ºС);
А — площадь поверхности охлаждения редуктора.
Для облегчения определения площади поверхности редуктора компоновочный чертеж упрощаем до формы параллепипеда с размерами 300х250х100мм. Тогда
А=2х0,3х0,25+2х0,25х0,1+2х0,3х0,1=0,26м2
Подставив данные в формулу (12.1) получим
tм=20+5335(1-0,85)/(10х0,26)=50,8˚С≤ [t м]

Рис.12 Конструкция корпуса редуктора

13. Определение конструктивных размеров крышек подшипников
Конструкцию крышек подшипников принимаем привертную (рис.13).

Рис.13 Конструкция крышек подшипников
Определяем основные размеры крышек подшипников и заносим результаты в табл.8.
Таблица 8
Основные размеры крышек подшипников

Размер
Обозначение
Значение

ведущий вал
ведомый вал

Наружный диаметр, мм
D1
110
155

Наружный посадочный диаметр, мм
D
72
110

Внутренний диаметр по валу, мм
d
31
61

Внутренний диаметр по манжете, мм
d1
52
85

Внутренний диаметр по подшипнику, мм
d2
64
95

Толщина стенки, мм
b
12
15

Остальные размеры определяем конструктивно при построении чертежа.

14. Выбор системы и вида смазки

Скорость скольжения в зацеплении VS = 2,38 м/с. Контактные напряжения sН = 510 Н/мм2. По таблице 10.29 из [3] выбираем масло И-Т-Д-460.
Используем картерную систему смазывания. В корпус редуктора заливаем масло так, чтобы венец зубчатого колеса был в него погружен на глубину hм (рис.14)

Рис.14 Схема определения уровня масла в редукторе hм = (0,1…0,5)d1 = 0,25×40 = 10мм; hм min = 2,2m = 4мм.
При вращении колеса масло будет увлекаться его зубьями, разбрызгиваться, попадать на внутренние стенки корпуса, откуда стекать в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которым покрываются поверхности расположенных внутри корпуса деталей, в том числе и подшипники.
Объем масляной ванны V = 0.65×PII = 0.65×3,65 = 2.37 л.
Контроль уровня масла производится через круглый прозрачный маслоуказатель, для чего в корпусе в зоне верхнего и нижнего уровней смазки делаются отверстия. Для слива масла предусмотрена сливная пробка. Заливка масла в редуктор производится через съемную крышку, в которую закручивается пробка-отдушина.
И для вала-червяка, и для вала червячного колеса выберем манжетные уплотнения по ГОСТ 8752-79. Установим их рабочей кромкой внутрь корпуса так, чтобы обеспечить к ней хороший доступ масла.

15. Выбор стандартных изделий

Выбор подшипников, манжет и шпонок произведен ранее.
В качестве стяжных винтов выбираем винты с внутренним шестигранником по ГОСТ 11738-84 с резьбой М10 и длинами 18мм. Для крепления крышек подшипников выбираем винты с внутренним шестигранником по ГОСТ 11738-84 с резьбой М8 и длинами 16мм. Под винты устанавливаем пружинные шайбы по ГОСТ6402-70. М6х10 ГОСТ1491-80 – 4шт. Для крепления маслоуказателя выбираем винты М4х8 ГОСТ1491-80 – 4шт.Для фиксации крышки и основания корпуса выбираем 2 штифта 5х32 ГОСТ3129-70.

Список использованной литературы

1. Дунаев П.Ф., Детали машин, Курсовое проектирование. М. Высшая школа, 1990.
2. Скойбеда А.Т., Кузьмин А.В., Макейчик Н.Н., Детали машин и основы конструирования, Минск «Вышейшая школа», 2000.
3. Куклин Н.Г., Куклина Г.С., Детали машин, учебник для техникумов. М. Высшая школа, 1987.
4. Курмаз А.В., Скойбеда А.Т., Детали машин, проектирование, учебное пособие Минск УП «Технопринт», 2001.