Сложение колебаний

    Реферат

           

                     На тему «Сложение колебаний»

             Студента I –го курса гр. 107

 Шлыковича Сергея

                                                                

      Минск 2001

 

Векторная диаграмма

            Колебаниями называются движения или процессы, обладающие той или иной повторяемостью во времени.

Сло­жение нескольких гармонических колебаний одного направления и одинаковой частоты становится нагляд­ным, если изображать колебания графически в виде векторов на плоскости. Полученная таким способом схема называется векторной диаграммой.

Возьмем ось, вдоль которой будем откладывать колеблющуюся величину  x. Из взятой на оси точки О отложим вектор длины A, образующий с осью угол б. Если привести этот вектор во вращение с угло­вой скоростью щ0, то проекция конца вектора будет перемещать­ся по оси x в пределах от —А до +A, причем координата этой проекции будет изменяться со временем по закону

Следовательно,   проекция   конца    вектора на ось будет совершать гармонические  колебания   с  ам­плитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с на­чальной фазой, равной углу, образуемому вектором с осью в начальный момент времени.

Таким образом, гармоническое колебание может быть задано с помощью вектора, длина которого рав­на амплитуде колебания, а направление образует с осью x угол, равный начальной фазе колебаний.

Рассмотрим сложение двух гармонических коле­баний одного направления и одинаковой частоты. Результирующее колебание будет суммой колеба­ний х1 и x2, которые определяются функциями

,   (1)

Представим оба колебания с помощью векторов A1и А2. Построим по правилам сложения векторов результирующий вектор А. На рисунке вид­но, что проекция этого вектора на ось x равна сум­ме проекций складываемых векторов:

Поэтому, вектор A представляет собой резуль­тирующее колебание. Этот вектор вращается с той же угловой скоростью щ0, как и векторы А1 и А2, так что сумма x1 и х2 является гармоническим колебанием с частотой (щ0, амплитудой A и начальной фа­зой б. Используя теорему косинусов получаем, что

           (2)

Также, из рисунка видно, что

                                         (3)

Представление гармонических колебаний с помощью    векторов    позволяет    заменить сложение функций сложением  векторов, что значительно проще.


  Сложение колебаний во взаимно перпендикулярных направлениях.

 

Представим две взаимно перпен­дикулярные векторные величины x и y, изменяющие­ся со временем с одинаковой частотой щ по гармони­ческому закону, то

                     (1)

Где ex и eуорты координатных осей x и y, А и B — амплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия.

В случае колеблющейся частицы величины

,                    (2)

определяют координаты частицы на плоскости xy. Частица будет двигаться по некоторой траектории, вид которой зависит от раз­ности фаз обоих колебаний. Выражения (2) пред­ставляют собой заданное в параметрической форме уравнение этой траектории. Чтобы получить уравне­ние траектории в обычном виде, нужно исключить из уравнений (2) параметр t. Из первого уравне­ния следует, что

 (3) Соответственно       (4)

Развернем косинус во втором из уравнений (2) по формуле для косинуса суммы:

Подставим вместо cos щt и sinщt их значения (3) и (4):

Преобразуем это уравнение

          (5)

Это уравнение эллипса, оси которого по­вернуты относительно координатных осей х и у. Ори­ентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз б.

Попробуем найти форму траектории для нескольких частных случаев.

1. Разность фаз б равна нулю. В этом случае уравнение (5) упрощается следующим образом:

Отсюда получается уравнение прямой:

 

Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой щ и ам­плитудой, равной   (рис. 1 а).

2. Разность фаз б равна ±р. Из уравнение   (5)  имеет вид

Следовательно, результирующее движение представ­ляет собой гармоническое колебание вдоль прямой

   (рис. 1 б)

                                                                       Рис.1

3. При  уравнение (5) переходит в уравнение эллипса, приведенного к координатным осям:

Полуоси эллипса равны соответствующим амплиту­дам колебаний. При равенстве амплитуд А и В эллипс превращается в окружность.

Случаи и  отличаются на­правлением движения по эллипсу или окружности.

Следовательно, равномерное движение по окружности радиуса R с угловой скоростью щ может быть представлено как сумма двух взаимно перпен­дикулярных колебаний:

,   

(знак плюс в выражении для у соответствует движе­нию против часовой стрелки, знак минус — движе­нию по часовой стрелке).

Если частоты взаимно перпендикулярных колеба­ний не одинаковы, то траектории результирующего движения имеют вид сложных кривых, на­зываемых фигурами Лиссажу.


 

Фигура Лиссажу для

отношения   ча­стот 1:2 и

разности фаз р/2

Фигура Лиссажу для отношения частот 3:4 и разности фаз р/2