Виды тригонометрических уравнений

Реферат
на тему
“Виды тригонометрических уравнений”
Успенского Сергея

Харцызск
2001 год
Виды тригонометрических уравнений.
1. Простейшие тригонометрические уравнения
Пример 1. 2sin(3x — p/4) -1 = 0.
Решение. Решим уравнение относительно sin(3x — p/4).
sin(3x — p/4) = 1/2, отсюда по формуле решения уравнения sinx = а нахо­дим
3х — p/4 = (-1)n arcsin 1/2 + np, nÎZ.
Зх — p/4 = (-1)n p/6 + np, nÎZ; 3x = (-1)n p/6 + p/4 + np, nÎZ;
x = (-1)n p/18 + p/12 + np/3, nÎZ
Если k = 2n (четное), то х = p/18 + p/12 + 2pn/3, nÎZ.
Если k = 2n + 1 (нечетное число), то х = — p/18 + p/12 + ((2pn + 1)p)/3 =
= p/36 + p/3 + 2pn/3 = 13p/36 + 2pn/3, nÎz.
Ответ х1 = 5p/6 + 2pn/3,nÎZ, x2 = 13p/36 + 2pn/3, nÎZ,
или в градусах х, = 25° + 120 · n, nÎZ; x, = 65° + 120°· n, nÎZ.
Пример 2. sinx + Öз cosx = 1.
Решение. Подставим вместо Öз значение ctg p/6, тогда уравнение при­мет вид
sinx + ctg p/6 cosx = 1; sinx + (cosp/6)/sinp/6 · cosx = 1;
sinx sin p/6 + cos p/6 cosx = sin p/6; cos(x — p/6) = 1/2.
По формуле для уравнения cosx = а находим
х — p/6 = ± arccos 1/2 + 2pn, nÎZ; x = ± p/3 + p/6 + 2pn, nÎZ;
x1 = p/3 + p/6 + 2pn, nÎZ; x1 = p/2 + 2pn, nÎZ;
x2 = — p/3 + p/6 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ;
Ответ x1 = p/2 + 2pn, nÎZ; x2 = -p/6 + 2pn, nÎZ.

2. Двучленные уравнения
Пример 1. sin3x = sinx.
Решение. Перенесем sinx в левую часть уравнения и полученную разность преобразуем в произведение. sin3x — sinx == 0; 2sinx · cos2x = 0.
Из условия равенства нулю произведения получим два простейших уравнения.
sinx = 0 или cos2x = 0.
x1 = pn, nÎZ, x2 = p/4 + pn/2, nÎZ.
Ответ x1 = pn, nÎZ, x2 = p/4 + pn/2, nÎZ.
3. Разложение на множители

Пример 1. sinx + tgx = sin2x / cosx
Решение. cosx ⊃1; 0; x ⊃1; p/2 + pn, nÎZ.
sinx + sinx/cosx = sin2x / cosx . Умножим обе части уравнения на cosx.
sinx · cosx + sinx — sin2x = 0; sinx(cosx + 1 — sinx) = 0;
sinx = 0 или cosx — sinx +1=0;
x1 = pn, nÎZ; cosx — cos(p/2 — x) = -1; 2sin p/4 · sin(p/4 — x) = -1;
Ö2 · sin(p/4 — x) = -1; sin(p/4 -x) = -1/Ö2; p/4 — x = (-1) n+1 arcsin 1/Ö2 + pn, nÎZ;
x2 = p/4 — (-1) n+1 · p/4 — pn, nÎZ; x2 = p/4 + (-1) n · p/4 + pn, nÎZ.
Если n = 2n (четное), то x = p/2 + pn, если n = 2n + l (нечетное), то x = pn.
Ответ x1 = pn, nÎZ; x2 = p/4 + (-I)n · p/4 + pn, nÎZ.
4. Способ подстановки

Пример 1. 2 sin2x = 3cosx.
Решение. 2sin2x — 3cosx = 0; 2 (l — cos2x) — 3cosx = 0; 2cos2x + 3cosx — 2 = 0.
Пусть z = cosx, |z| £ 1. 2z2 + 32z — 2=0.
Д = 9+16 = 25; ÖД = 5; z1 = (-3 + 5)/4 = 1/2; z2 = (-3-5)/ 4 = -2 —
-не удовлетво­ряют условию для z. Тогда решим одно простейшее уравнение
cosx = 1/2; х = ± p/3 + 2pn, nÎZ. Ответ х = ± p/3 + 2pn, nÎZ.
5. Однородные уравнения

Однородные тригонометрические уравнения имеют такой вид
a sin2x + b sinxcosx + c cos2x = 0 (однородное уравнение 2-й степени) или
a sin3x + b sin2x cosx + c sinx cos2x + d sin3x = 0 и т.д.
В этих уравнениях sinx ⊃1; 0, cosx ⊃1; 0. Решаются они делением обеих частей уравнения на sin2x или на cos2x и приводятся к уравнениям отно­сительно tgx или ctgx.
Пример 1. Ö3sin2 2x — 2sin4x + Ö3cos22x = 0.
Решение. Разложим sin4x по формуле синуса двойного угла.
Получим уравнение Ö3sin22x — 4sin2xcos2x + Ö3cos22x = 0.
Разделим на cos22x. Уравнение примет вид Ö3 tg22x – 4tg2x + Ö3 = 0.
Пусть z = tg2x, тогда Ö3z2 — 4z + Ö3 = 0; Д = 4; ÖД = 2.
z1 = (4 +2)/2Ö3 = 6/2Ö3 = Ö3; z2 = (4 – 2)/2Ö3 = 1/Ö3
tg2x = Ö3 или tg2x = 1/Ö3
2x = p/3 + pn, nÎZ; 2x = p/6 + pn, nÎZ;
x1 = p/6 + pn/2, nÎZ ; x2 = p/12 + pn/2, nÎz.
Ответ x1 = p/6 + pn/2, nÎZ ; x2 = p/12 + pn/2, nÎz.
6. Уравнение вида a sinx + b cosx = с
Пример 1. 3sinx + 4cosx = 5.
Решение. Разделим обе части уравнения на 5, тогда 3/5sinx + 4/5cosx = 1.
sinj = 4/5; cosj = 3/5; sin(x+j) = 1, x + j = p/2 + 2pn, nÎZ.
Ответ x = p/2 — arcsin 4/5 + 2pn, nÎZ.
7. Дробно-рациональные тригонометрические уравнения

Уравнения, содержащие тригонометрические дроби, называются дробно-рациональными уравнениями. В этих уравнениях требуется сле­дить за областью допустимых значений.
Пример 1. 1/(Ö3-tgx) – 1/(Ö3 +tgx) = sin2x
Решение. Область допустимых значений решений этого уравнения
tgx ⊃1; ± Ö3, х ⊃1; ± p/8 + pn, nÎZ и х ⊃1; ± p/2 + pn, nÎZ.
Левую часть уравнения приведем к общему знаменателю, а правую преобразуем с помощью формулы выражения синуса угла через тан­генс половинного угла.
(Ö3 + tgx — Ö3 + tgx)/3 — tg2x = 2tgx/ (1 + tg2x); 2tgx / (3 — tg2x) = 2tgx/(1 + tg2x)
x1 = pn, nÎZ
Второе уравнение имеет вид
2tg2x — 2 = 0; tg2x = 1; tgx = ±1; x2 = ± p/4 + pn, nÎZ.
Ответ x1 = pn, nÎZ; х2 = ± p/4 + pn, nÎZ.
8. Иррациональные тригонометрические уравнения

Если в уравнении тригонометрическая функция находится под зна­ком радикала, то такое тригонометрическое уравнение будет иррацио­нальным. В таких уравнениях следует соблюдать все правила, которы­ми пользуются при решении обычных иррациональных уравнений (учи­тывается область допустимых значений как самого уравнения, так и при освобождении от корня четной степени).
Пример 1. Ö( cos2x + ½) + Ö( sin2x + ½) = 2.
Решение. Уравнение имеет смысл при любом х. Возведем обе части уравнения в квадрат.
cos2x + ½ + 2 Ö(( cos2x + ½) ( sin2x + ½)) + sin2x + ½ = 4
Ö(( cos2x + ½) ( sin2x + ½)) = 1; ( cos2x + ½) ( sin2x + ½) = 1
( ½ + ½ cos2x + ½)( ½ — ½ cos2x + ½) = 1; (1 + ½ cos2x) (1 — ½ cos2x) = 1;
1 – ¼ cos22x = 1; cos2x=0; x = p/4 + pn/2, nÎz
Ответ x = p/4 + pn/2, nÎz.
9. Тригонометрические уравнения, в которых под знаком тригонометрической функции находится функция

Особого внимания заслуживают тригонометрические уравнения со сложной зависимостью, когда под знаком тригонометрической функ­ции находится какая-либо другая функция. Эти уравнения требуют до­полнительного исследования множества решений.
Пример 1. tg(x2 + 5x)ctg 6=1.
Решение. Запишем уравнение в виде tg(x2+5x)=tg 6. Учитывая, что аргументы равных тангенсов отличаются на свои периоды теп, имеем х2 + 5х = 6 + pn, nÎZ; х2 + 5х — (6+pn) = 0, nÎz;
Д = 25 + 4(6 + pn) = 49 + 4pn, nÎZ; х1,2 = (-5 ± Ö(49 + 4pn))/2, nÎz
Решение имеет смысл, если 49 + 4pn > 0, т.е. n ⊃3; -49/4p; n ⊃3; -3.
Литераура
“Математика” Р. Л . Вейцман, Л . Р. Вейцман, 2000 г.
(стр. 116 — 125)
“Алгебра начала анализа 10-11” А . Н . Колмогоров,
А . М . Абрамов, Ю . П . Дудницын, Б . М . Ивлев,
С . И . Шварцбурд, 1993 г.
(стр. 62 — 78)