Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

Прусаков Д. В.
«Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области» 1998- 99 уч. г.

14

Введение 3
1.Постановка задачи 3
2. Оценочный анализ решения задачи. 4
2.1. Оценка решения сверху. 4
2.2. Оценка решения в виде интеграла 5
2.3. Выбор интервала ( ) и оценка погрешности 8
3. Формулировка результата в виде теоремы 10
4. Примеры 11
Заключение 12
СПИСОК ЛИТЕРАТУРЫ 13

Введение
В ряде случаев оказывается невозможным или неприемлемым получение аналитического решения поставленной задачи. Использование основных теорем и положений анализа позволяет получить качественную картину поведения функции решения в заданной области, оценить скорость сходимости решения. Такой подход широко реализуется в областях техники, где получение результата необходимо с заданной точностью.

1.Постановка задачи

В дипломной работе рассматривается задача

(З)

0.
t
x

Требуется привести пример оценки решения задачи (З) в области , и исследовать полученную оценку при

2. Оценочный анализ решения задачи.

Оценка решения задачи (З) основывается на принципе максимума для уравнения теплопроводности «Всякое решение уравнения в прямоугольнике , непрерывное вплоть до границы, принимает свои наибольшее и наименьшее значения на нижних или на боковых его границах» [2].

2.1. Оценка решения сверху.

В области t=t , x= рассмотрим решение задачи

, V(0,x) = ( x ), x , (1)

это решение имеет вид [1]

v (t, x) = . (2)

Зафиксируем некоторое и перейдем к исходной системе координат, тогда (2) в системе t=t, x= будет выглядеть так
V(t, x) = (2’)
Из принципа максимума [2] заключаем, что

U( t, x ) V( t, x ). (3)

Таким образом задача сводится к оценке интеграла (2).

2.2. Оценка решения в виде интеграла

Разобьем интервал < x на две части и , тогда интеграл (2’) запишется в виде
V( t, x ) = . (*)

Исследуем знак подинтегрального выражения, принимая во внимание, то что

; (а)

;

;

где .

После проведенного исследования видно, что

Использовав известное разложение ,
где Z 0, , заменим экспоненты во втором интеграле рядами

(а) ;

(б) .

В результате получим

Здесь

, , (4.1)

, . (4.2)

Запишем неравенство (3) в виде, принимая во внимание только одно слагаемое суммы ряда

m=1,

U(t, x) . (5)

Выше приведенная оценка не отражает качественной картины и может быть использована при дальнейших исследованиях задач подобного вида. ( т .к .фиксированно)
Рассмотрим другую возможность оценки неравенства (3).

пусть
(т.е. финитна), в соответствии с принципом максимума

, (3’)
при
где W- решение краевой задачи (З) с начальными условиями

Аналогично, как и выше

здесь

Таким образом,

(используем разложение в ряд Тейлора)

В итоге,

(5.1)
Рассмотрим два случая
а) Пусть
,
тогда в правой части неравенства (5.1) третье и четвертое (3,4) слагаемые стремятся к нулю быстрее любой степени ,
поэтому (5.1) можно переписать как
(5.2)
б) Пусть тогда

где
В результате получаем
(5.3)
2.3. Выбор интервала ( ) и оценка погрешности

Зададим произвольно некоторую константу >0, потребовав чтобы в (5)
.
при .
Неравенство (5) можно только усилить, если
(6)

Рассмотрим общий вид

; (7)
, (7.1)
b=x ( k=1 ) , b=2(k=2) оценка (7.1) эквивалентна системе неравенств

,

откуда
. (8)

Т. к. в работе исследуется поведение неравенства (3) при то принимаем что для некоторого

. (9)

3. Формулировка результата в виде теоремы

Обобщая результаты всей работы в целом можно сформулировать следующие теоремы

1. Пусть для уравнения теплопроводности имеет место задача
(З)
— гладкая, непрерывно — дифференцируемая функция на ,а функция ограничена на R .
Тогда для любого сколь малого числа можно указать число
,
такое что имеет место следующая оценка «сверху» решения задачи (З)

Раскрыв квадратные скобки, получим

.

Пусть в имеет место задача (З), — монотонная, неограниченная, возрастающая функция, тогда
если , то

2) если то

Замечанние видно, что оценку полученную в теореме 2 можно получить и при более слабых ограничениях
4. Примеры

Пусть ,

.

Заключение

В дипломной работе произведена оценка решения «сверху» для уравнения теплопроводности с движущей границей по заданному закону. Аналогично, можно получить оценку решения «снизу». Для этого нужно рассмотреть ступенчатую область, в которой для каждой ступеньки решение может быть получено согласно 2.1 (2) . Число таких ступенчатых областей необходимо выбрать таким образом, чтобы оценка полученная снизу была сравнима с полученной выше оценкой.

СПИСОК ЛИТЕРАТУРЫ

А. Н. Тихонов, А. А. Самарский, Уравнения математической физики. Изд. «Наука», М. 1966 (с. 230 -233);
С. К. Годунов, Уравнения математической физики. Изд. «Наука», М. 1973 . 33-34);
Л. Д. Кудрявцев, Краткий курс математического анализа. Изд. «Наука», М. 1989.