Стандартные интерфейсы подключения датчиков и исследовательских приборов

РЕФЕРАТ
ПО ФОПИ

По теме Стандартные интерфейсы подключения датчиков и исследовательских приборов

Выполнил xxxxxx xxxx гр.xxxxx

ПетрГУ,2003

Содержание

Параллельный порт.
Последовательные порты ПЭВМ.Интерфейс RS-232C.
Интерфейс USB описание и основы устройств сопряжения
ЦИФРОВОЙ ЗАПОМИНАЮЩИЙ ОСЦИЛЛОГРАФ ЛА-ОЦЗС .
Источники.

Параллельный порт.

Поскольку параллельный порт в IBM PC-совместимом компьютере используется обычно для подключения принтера, то его часто называют принтер портом. Компьютер работает максимум с тремя параллельными портами, которые имеют логические имена LPT1, LPT2 и LPT3. В адресном пространстве компьютера резервируются базовые адреса этих портов 3BCh, 378h и 278h. Первый адрес обычно используется, если порт находится, например, на плате графического адаптера Hercules или EGA. На плате Multi I/O Card адрес LPT1 – 378h, а LPT2 – 278h. Для порта LPT1 предусмотрено аппаратное прерывание IRQ7, а для LPT2 – IRQ5, хотя на практике они используются очень редко. Установка базовых адресов портов и возможность использования прерываний настраиваются установкой перемычек (jumpers) на плате, описание которых приведено обычно в технической документации для конкретного адаптера.

BIOS поддерживает до четырех (иногда до трех) LPT-портов (LPT1-LPT4) своим сервисом — прерыванием INT 17h, обеспечивающим через них связь с устройствами по интерфейсу Centromcs. Этим сервисом BIOS осуществляет вывод символа (по опросу готовности, не используя аппаратных прерываний), инициализацию интерфейса и устройства, а также опрос состояния устройства.

Сначала интерфейс Centronics был конструктивно реализован на нескольких ТТЛ микросхемах. Именно на них в этом случае выполняется декодирование адреса, промежуточное хранение и инвертирование отдельных сигналов. Интерфейс Centronics использует электрические сигналы ТТЛ уровня (+5В и 0В). Затем широкое распространение получили адаптеры, в которых практически все функции отдельных ТТЛ микросхем объединены в одной БИС типа 82C11, выполненной по КМОП технологии (уровни сигналов по-прежнему ТТЛ). Теперь на многофункциональных картах все микросхемы портов и адаптеров “спрятаны” в одной или двух СБИС.

Начиная с базового адреса, каждый порт имеет в адресном пространстве три адреса. При этом первый адрес соответствует регистру данных, посылаемых от компьютера к устройству. Чтение установленных битов данных можно осуществить по тому же адресу. Физически чтение данных происходит через специальный буфер данных. Следующий адрес (базовый плюс 1) позволяет читать регистр статуса адаптера (расположенный в устройстве) через буферную микросхему. В регистре статуса биты 3-7 позволяют определить состояние некоторых сигналов интерфейса Centronics
бит 3 = 0 Error
бит 4 = 1 Select
бит 5 = 1 Paper out
бит 6 = 0 Acknowledge
бит 7 = 0 Busy

Чтение регистра статуса имеет смысл при передаче данных на принтер для определения состояния принтера и процесса передачи данных.

Адрес третьего порта (базовый плюс 2) соответствует регистру управления интерфейса.

Стандарт IEEE 1284-1994.

Стандарт на параллельный интерфейс ШЕЕ 1284, принятый в 1994 году, определяет термины SPP, ЕРР и ЕСР. Стандарт определяет 5 режимов обмена данными, метод согласования режима, физический и электрический интерфейсы. Согласно IEEE 1284, возможны следующие режимы обмена данными через параллельный порт

-Compatibility Mode — однонаправленный (вывод) по протоколу Centromcs. Этот режим соответствует стандартному (традиционному) порту SPP.

-Nibble Mode — ввод байта в два цикла (по 4 бита), используя для приема линии состояния. Этот режим обмена может использоваться на любых адаптерах.

-Byte Mode — ввод байта целиком, используя для приема линии данных. Этот режим работает только на портах, допускающих чтение выходных данных (Bi-Directi’onal или PS/2 Type 1).

-ЕРР (Enhanced Parallel Port) Mode — двунаправленный обмен данными, при котором управляющие сигналы интерфейса генерируются аппаратно во время цикла обращения к порту (чтения или записи в порт). Эффективен при работе с устройствами внешней памяти, адаптерами локальных сетей.

-ЕСР (Extended Capability Port) Mode — двунаправленный обмен данными с возможностью аппаратного сжатия данных по методу RLE (Run Length Encoding) и использования FIFO-буферов и DMA. Управляющие сигналы интерфейса генерируются аппаратно. Эффективен для принтеров и сканеров.

В современных АТ-машинах с LPT-портом на системной плате режим порта — SPP, ЕРР, ЕСР или их комбинация задается в BIOS Setup. Режим Compatibility Mode, как это и следует из его названия, полностью соответствует вышеописанному стандартному порту SPP.

Физический и электрический интерфейс.

Стандарт IEEE 1284 определяет физические характеристики приемников и передатчиков сигналов. IEEE 1284 определяет два уровня интерфейсной совместимости. Первый уровень (Level I) определен для устройств, не претендующих на высокоскоростные режимы обмена, но использующих возможности смены направления передачи данных. Второй уровень (Level II) определен для устройств, работающих в расширенных режимах, с высокими скоростями и длинными кабелями.

Стандарт IEEE 1284 определяет и три типа используемых разъемов. Типы A (DB-25) и В (Centromcs-36) используются в традиционных кабелях подключения принтера, тип С — новый малогабаритный 36-контактный разъем.

Интерфейсные кабели, традиционно используемые для подключения принтеров, обычно имеют от 18 до 25 проводников, в зависимости от числа проводников цепи GND. Эти проводники могут быть как перевитыми, так и нет. К экранированию кабеля жестких требований не предъявлялось. Такие кабели вряд ли будут надежно работать на скорости передачи 2 Мбайт/с и при длине более 2 метра. Стандарт IEEE 1284 регламентирует и свойства кабелей.

-Все сигнальные линии должны быть перевитыми с отдельными обратными (общими) проводами.

-Каждая пара должна иметь импеданс 62(±)6 Ом в частотном диапазоне 16 МГц.

-Уровень перекрестных помех между парами не должен превышать 10%.

-Кабель должен иметь экран (фольгу), покрывающий не менее 85% внешней поверхности. На концах кабеля экран должен быть окольцован и соединен с контактом разъема.

Управление параллельным портом разделяется на два этапа — предварительное конфигурирование (Setup) аппаратных средств порта и текущее (оперативное) переключение режимов работы прикладным или системным ПО. Оперативное переключение возможно только в пределах режимов, разрешенных при конфигурировании. Способ и возможности конфигурирования LPT-портов зависят от его исполнения и местоположения. Порт, расположенный на плате расширения (обычно на мультикарте), устанавливаемой в слот ISA или ISA+VLB, обычно конфигурируется джамперами на самой плате. Порт, расположенный на системной плате, обычно конфигурируется через BIOS Setup.

Конфигурированию подлежат следующие параметры

-Базовый адрес, который может иметь значение 3BCh, 378h и 278h. При инициализации BIOS проверяет наличие портов по адресам именно в этом порядке и, соответственно, присваивает обнаруженным портам логические имена LPT1, LPT2, LPT3. .Адрес 3BCh имеет адаптер порта, расположенный на плате MDA или HGC. Большинство портов по умолчанию конфигурируется на адрес 378h и может переключаться на 278h.

-Используемая линия запроса прерывания, для LPT1 обычно используется IRQ7, для LPT2 — IRQ5. Во многих “настольных” применениях прерывания от принтера не используются, и этот дефицитный ресурс PC можно сэкономить. Однако при использовании скоростных режимов ЕСР (или Fast Centronics) работа по прерываниям может заметно повысить производительность и снизить загрузку процессора.

-Использование канала DMA для режимов ЕСР и Fast Centromcs — разрешение и номер канала DMA.

Режим работы порта может быть задан в следующих вариантах

-SPP — порт работает только в стандартном однонаправленном программно-управляемом режиме.

-PS/2, он же Bi-Directional — отличается от SPP возможностью реверса канала (с помощью установки CR.5=1).

-Fast Centromcs — аппаратное формирование протокола Centromcs с использованием FIFO-буфера и, возможно, DMA.

Подсоединение кабеля к адаптеру параллельного интерфейса производится через 25-контактный разъём типа D-shell (DB-25) (таблица 1).Распределение сигналов по контактам обоих разъемов показано в таблице 2. Вообще говоря, для простой передачи данных на принтер требуются не все сигналы определенные стандартом Centronics. Для того чтобы обеспечить функционирование интерфейса, достаточно использовать только 8 бит данных (D0-D7), строб сигнал (Data Strobe) и сигнал занятости (Busy). Теперь несколько слов о тех сигналах, которые обычно используются.

Data Strobe. Когда компьютер посылает данные на устройство, он в течение 5 мкс должен активировать этот сигнал (низкий уровень). Этим устройству сообщается о том, что данные на соответствующих шинах готовы.

Data 0-7. По этим 8 сигнальным линиям данные передаются от компьютера к устройству. После установления сигнала Data Strobe устройство читает эту информацию.

Acknowledge. Если устройство приняло выставленные компьютером данные, то оно в подтверждение в течение приблизительно 10 мкс удерживает эту линию в активном состоянии (низкий уровень).

Busy. Если устройство не может принять данные, то сигнал активизируется (высокий уровень). Это может произойти, например, в следующих случаях при инициализации устройства, если устройство находится в состоянии off-line, при появлении внутренней ошибки.

Примечание Порты расширенных стандартов позволяют производить чтение с внешних устройств по линиям данных D0-D7. Для включения режима чтения необходимо установить в 1 бит 5 регистра управления интерфейсом (третий порт, базовый адрес плюс 2).

Таблица 1. Сигналы параллельного интерфейса (разъем DB25).

Контакт
Направление
Сигнал

1
Выход
Data Strobe

2
Выход
Data0

3
Выход
Data1

4
Выход
Data2

5
Выход
Data3

6
Выход
Data4

7
Выход
Data5

8
Выход
Data6

9
Выход
Data7

10
Вход
Acknowledge

11
Вход
Busy

12
Вход
Paper Out

13
Вход
Select

14
Выход
Auto feed

15
Вход
Error

16
Выход
Init

17
Выход
Select Input

18-25

Ground

Таблица 2. Сигналы параллельного интерфейса (разъем Centronics)

Контакт
Направление
Сигнал

1
Вход
Data Strobe

2
Вход
Data0

3
Вход
Data1

4
Вход
Data2

5
Вход
Data3

6
Вход
Data4

7
Вход
Data5

8
Вход
Data6

9
Вход
Data7

10
Выход
Acknowledge

11
Выход
Busy

12
Выход
Paper Out

13
Выход
Select

14
Вход
Auto feed

15

No connect

16

Gnd

17

Shassis Gnd

18

+5 V

19-30

Gnd

31
Вход
Init

32
Выход
Error

33

Gnd

34

Clock

35
Вход
Test

36
Вход
Select Input

Последовательные порты ПЭВМ.Интерфейс RS-232C.

Последовательная передача данных
Микропроцессорная система без средств ввода и вывода оказывается бесполезной. Характеристики и объемы ввода и вывода в системе определяются, в первую очередь, спецификой ее применения — например, в микропроцессорной системе управления некоторым промышленным процессом не требуется клавиатура и дисплей, так как почти наверняка ее дистанционно программирует и контролирует главный микрокомпьютер (с использованием последовательной линии RS-232C).
Поскольку данные обычно представлены на шине микропроцессора в параллельной форме (байтами, словами), их последовательный ввод-вывод оказывается несколько сложным. Для последовательного ввода потребуется средства преобразования последовательных входных данных в параллельные данные, которые можно поместить на шину. С другой стороны, для последовательного вывода необходимы средства преобразования параллельных данных, представленных на шине, в последовательные выходные данные. В первом случае преобразование осуществляется регистром сдвига с последовательным входом и параллельным выходом (SIPO), а во втором — регистром сдвига с параллельным входом и последовательным выходом (PISO).
Последовательные данные передаются в синхронном или асинхронном режимах. В синхронном режиме все передачи осуществляются под управлением общего сигнала синхронизации, который должен присутствовать на обоих концах линии связи. Асинхронная передача подразумевает передачу данных пакетами; каждый пакет содержит необходимую информацию, требующуюся для декодирования содержащихся в нем данных. Конечно, второй режим сложнее, но у него есть серьезное преимущество не нужен отдельный сигнал синхронизации.
Существуют специальные микросхемы ввода и вывода, решающие проблемы преобразования, описанные выше. Вот список наиболее типичных сигналов таких микросхем
D0-D7 — входные-выходные линии данных, подключаемые непосредственно к шине процессора;
RXD — принимаемые данные (входные последовательные данные);
TXD — передаваемые данные (выходные последовательные данные);
CTS — сброс передачи. На этой линии периферийное устройство формирует сигнал низкого уровня, когда оно готово воспринимать информацию от процессора;
RTS — запрос передачи. На эту линию микропроцессорная система выдает сигнал низкого уровня, когда она намерена передавать данные в периферийное устройство.
Все сигналы программируемых микросхем последовательного ввода-вывода ТТЛ-совместимы. Эти сигналы рассчитаны только на очень короткие линии связи. Для последовательной передачи данных на значительные расстояния требуются дополнительные буферы и преобразователи уровней, включаемые между микросхемами последовательного ввода-вывода и линией связи.
Общие сведения о интерфейсе RS-232C
Интерфейс RS-232C является наиболее широко распространенной стандартной последовательной связью между микрокомпьютерами и периферийными устройствами. Интерфейс, определенный стандартом Ассоциации электронной промышленности (EIA), подразумевает наличие оборудования двух видов терминального DTE и связного DCE.
Чтобы не составить неправильного представления об интерфейсе RS-232C, необходимо отчетливо понимать различие между этими видами оборудования. Терминальное оборудование, например микрокомпьютер, может посылать и (или) принимать данные по последовательному интерфейсу. Оно как бы оканчивает (terminate) последовательную линию. Связное оборудование — устройства, которые могут упростить передачу данных совместно с терминальным оборудованием. Наглядным пример связного оборудования служит модем (модулятор-демодулятор). Он оказывается соединительным звеном в последовательной цепочке между компьютером и телефонной линией.
Различие между терминальными и связными устройствами довольно расплывчато, поэтому возникают некоторые сложности в понимании того, к какому типу оборудования относится то или иное устройство. Рассмотрим ситуацию с принтером. К какому оборудованию его отнести? Как связать два компьютера, когда они оба действуют как терминальное оборудование. Для ответа на эти вопросы следует рассмотреть физическое соединение устройств. Произведя незначительные изменения в линиях интерфейса RS-232C, можно заставить связное оборудование функционировать как терминальное. Чтобы разобраться в том, как это сделать, нужно проанализировать функции сигналов интерфейса RS-232C (таблица 1).

Таблица 1. Функции сигнальных линий интерфейса RS-232C.

Номер контакта
Сокращение
Направление
Полное название

1
FG

Основная или защитная земля

2
TD (TXD)
К DCE
Передаваемые данные

3
RD (RXD)
К DTE
Принимаемые данные

4
RTS
К DCE
Запрос передачи

5
CTS
К DTE
Сброс передачи

6
DSR
К DTE
Готовность модема

7
SG

Сигнальная земля

8
DCD
К DTE
Обнаружение несущей данных

9

К DTE
(Положительное контрольное напряжение)

10

К DTE
(Отрицательное контрольное напряжение)

11
QM
К DTE
Режим выравнивания

12
SDCD
К DTE
Обнаружение несущей вторичных данных

13
SCTS
К DTE
Вторичный сброс передачи

14
STD
К DCE
Вторичные передаваемые данные

15
TC
К DTE
Синхронизация передатчика

16
SRD
К DTE
Вторичные принимаемые данные

17
RC
К DTE
Синхронизация приемника

18
DCR
К DCE
Разделенная синхронизация приемника

19
SRTS
К DCE
Вторичный запрос передачи

20
DTR
К DCE
Готовность терминала

21
SQ
К DTE
Качество сигнала

22
RI
К DTE
Индикатор звонка

23

К DCE
(Селектор скорости данных)

24
TC
К DCE
Внешняя синхронизация передатчика

25

К DCE
(Занятость)

Примечания
Линии 11, 18, 25 обычно считают незаземленными. Приведенная в таблице спецификация относится к спецификациям Bell 113B и 208A.
Линии 9 и 10 используются для контроля отрицательного (MARK) и положительного (SPACE) уровней напряжения.
Во избежание путаницы между RD (Read — считывать) и RD (Received Data — принимаемые данные) будут использоваться обозначения RXD и TXD, а не RD и TD.

Стандартный последовательный порт RS-232C имеет форму 25-контактного разъема типа D (рис 1).

Рис. 1. Назначение линий 25-контактного разъема типа D для интерфейса RS-232C

Терминальное оборудование обычно оснащено разъемом со штырьками, а связное — разъемом с отверстиями (но могут быть и исключения).
Сигналы интерфейса RS-232C подразделяются на следующие классы.
Последовательные данные
(например, TXD, RXD). Интерфейс RS-232C обеспечивает два независимых последовательных канала данных первичный (главный) и вторичный (вспомогательный). Оба канала могут работать в дуплексном режиме, т.е. одновременно осуществляют передачу и прием информации.
Управляющие сигналы квитирования
(например, RTS, CTS). Сигналы квитирования — средство, с помощью которого обмен сигналами позволяет DTE начать диалог с DCE до фактической передачи или приема данных по последовательной линии связи.
Сигналы синхронизации
(например, TC, RC). В синхронном режиме (в отличие от более распространенного асинхронного) между устройствами необходимо передавать сигналы синхронизации, которые упрощают синхронизм принимаемого сигнала в целях его декодирования.
На практике вспомогательный канал RS-232C применяется редко, и в асинхронном режиме вместо 25 линий используются 9 линий (таблица 2).

Таблица 2. Основные линии интерфейса RS-232C.

Номер контакта
Сигнал
Выполняемая функция

1
FG
Подключение земли к стойке или шасси оборудования

2
TXD
Последовательные данные, передаваемые от DTE к DCE

3
RXD
Последовательные данные, принимаемые DTE от DCE

4
RTS
Требование DTE послать данные к DCE

5
CTS
Готовность DCE принимать данные от DTE

6
DSR
Сообщение DCE о том, что связь установлена

7
SG
Возвратный тракт общего сигнала (земли)

8
DCD
DTE работает и DCE может подключится к каналу связи

Виды сигналов
В большинстве схем, содержащих интерфейс RS-232C, данные передаются асинхронно, т.е. в виде последовательности пакета данных. Каждый пакет содержит один символ кода ASCII, причем информация в пакете достаточна для его декодирования без отдельного сигнала синхронизации.
Символы кода ASCII представляются семью битами, например буква А имеет код 1000001. Чтобы передать букву А по интерфейсу RS-232C, необходимо ввести дополнительные биты, обозначающие начало и конец пакета. Кроме того, желательно добавить лишний бит для простого контроля ошибок по паритету (четности).
Наиболее широко распространен формат, включающий в себя один стартовый бит, один бит паритета и два стоповых бита. Начало пакета данных всегда отмечает низкий уровень стартового бита. После него следует 7 бит данных символа кода ASCII. Бит четности содержит 1 или 0 так, чтобы общее число единиц в 8-битной группе было нечетным. Последним передаются два стоповых бита, представленных высоким уровнем напряжения. Эквивалентный ТТЛ-сигнал при передаче буквы А показан на рис. 2.

Рис. 2. Представление кода буквы А сигнальными уровнями ТТЛ.

Таким образом, полное асинхронно передаваемое слово состоит из 11 бит (фактически данные содержат только 7 бит) и записывается в виде 01000001011.
Используемые в интерфейсе RS-232C уровни сигналов отличаются от уровней сигналов, действующих в компьютере. Логический 0 (SPACE) представляется положительным напряжением в диапазоне от +3 до +25 В, логическая 1 (MARK) — отрицательным напряжением в диапазоне от -3 до -25 В. На рис. 3 показан сигнал в том виде, в каком он существует на линиях TXD и RXD интерфейса RS-232C.

Рис. 3. Вид кода буквы А на сигнальных линиях TXD и RXD.

Сдвиг уровня, т.е. преобразование ТТЛ-уровней в уровни интерфейса RS-232C и наоборот производится специальными микросхемами драйвера линии и приемника линии.
На рис. 4 представлен типичный микрокомпьютерный интерфейс RS-232C. Программируемая микросхема DD1 последовательного ввода осуществляет параллельно-последовательные и последовательно-параллельные преобразования данных. Микросхемы DD2 и DD3 производят сдвиг уровней для трех выходных сигналов TXD, RTS, DTR, а микросхема DD4 — для трех входных сигналов RXD, CTS, DSR. Микросхемы DD2 и DD3 требуют напряжения питания ±12 В.

Рис. 4. Типичная схема интерфейса RS-232C.
Усовершенствования
Разработано несколько новых стандартов, направленных на устранение недостатков первоначальных спецификаций интерфейса RS-232C. Среди них можно отметить интерфейс RS-422 (балансная система, допускающая импеданс линии до 50 Ом), RS-423 (небалансная система с минимальным импедансом линии 450 Ом) и RS-449 (стандарт с высокой скоростью передачи данных, в котором несколько изменены функции схем и применяется 37-контактный разъем типа D).
Тестовое оборудование для интерфейса RS-232C
Соединители.
Эти дешевые устройства упрощают перекрестные соединения сигнальных линий интерфейса RS-232C. Они обычно оснащаются двумя разъемами типа D (или ленточными кабелями, имеющими розетку и вставку), и все линии проводятся к той области, куда можно вставить перемычки. Такие устройства включаются последовательно с линиями интерфейса RS-232C, и затем проверяются различные комбинации подключений.
Трансформаторы разъема.
Обычно эти приспособления имеют разъем RS-232C со штырьками на одной стороне и разъем с отверстиями на другой стороне.
Пустые модемы.
Как и предыдущие устройства, пустые модемы включаются последовательно в тракт данных интерфейса RS-232C. Их функции заключаются в изменении сигнальных линий таким образом, чтобы превратить DTE в DCE.
Линейные мониторы.
Мониторы индицируют логические состояния (в терминах MARK и SPACE) наиболее распространенных сигнальных линий данных и квитирования. С их помощью пользователь получает информацию о том, какие сигналы в системе присутствуют и активны.
Врезки.
Эти устройства обеспечивают доступ к сигнальным линиям. В них, как правило, совмещены возможности соединителей и линейных мониторов и, кроме того, предусмотрены переключатели или перемычки для соединения линий с обоих сторон устройства.
Интерфейсные тестеры.
По своей конструкции эти устройства несколько сложнее предыдущих простых устройств. Они позволяют переводить линии в состояния MARK или SPACE, обнаруживать помехи, измерять скорость передачи данных и индицировать структуру слова данных.

Интерфейс USB описание и основы устройств сопряжения

Интерфейс USB (Universal Serial Bus — Универсальный Последовательный Интерфейс) предназначен для подключения периферийных устройств к персональному компьютеру. Позволяет производить обмен информацией с периферийными устройствами на трех скоростях (спецификация USB 2.0)

Низкая скорость (Low Speed — LS) — 1,5 Мбит/с;
Полная скорость (Full Speed — FS) — 12 Мбит/с;
Высокая скорость (High Speed — HS) — 480 Мбит/с.

Для подключения периферийных устройств используется 4-жильный кабель питание +5 В, сигнальные провода D+ и D-, общий провод.

Интерфейс USB соединяет между собой хост (host) и устройства. Хост находится внутри персонального компьютера и управляет работой всего интерфейса. Для того, чтобы к одному порту USB можно было подключать более одного устройства, применяются хабы (hub — устройство, обеспечивающее подключение к интерфейсу других устройств). Корневой хаб (root hub) находится внутри компьютера и подключен непосредственно к хосту. В интерфейсе USB используется специальный термин функция» — это логически законченное устройств, выполняющее какую-либо специфическую функцию. Топология интерфейса USB представляет собой набор из 7 уровней (tier) на первом уровне находится хост и корневой хаб, а на последнем — только функции. Устройство, в состав которого входит хаб и одна или несколько функций, называется составным (compaund device).
Порт хаба или функции, подключаемый к хабу более высокого уровня, называется восходящим портом (upstream port), а порт хаба, подключаемый к хабу более низкого уровня или к функции называется нисходящим портом (downstream port).
Все передачи данных по интерфейсу иницируются хостом. Данные передаются в виде пакетов. В интерфейсе USB испольуется несколько разновидностей пакетов
пакет-признак (token paket) описывает тип и направление передачи данных, адрес устройства и порядковый номер конечной точки (КТ — адресуемая часть USB-устройства); пакет-признаки бывают нескольких типов IN, OUT, SOF, SETUP;
пакет с данными (data packet) содержит передаваемые данные;
пакет согласования (handshake packet) предназначен для сообщения о результатах пересылки данных; пакеты согасования бывают нескольких типов ACK, NAK, STALL.
Таким образом каждая транзакция состоит из трех фаз фаза передачи пакета-признака, фаза передачи данных и фаза согласования.
В интерфейсе USB используются несколько типов пересылок информации.
Управляющая пересылка (control transfer) используется для конфигурации устройства, а также для других специфических для конкретного устройства целей.
Потоковая пересылка (bulk transfer) используется для передачи относительно большого объема информации.
Пересылка с прерыванием (iterrupt transfer) испольуется для передачи относительно небольшого объема информации, для которого важна своевременная его пересылка. Имеет ограниченную длительность и повышенный приоритет относительно других типов пересылок.
Изохронная пересылка (isochronous transfer) также называется потоковой пересылкой реального времени. Информация, передаваемая в такой пересылке, требует реального масштаба времени при ее создании, пересылке и приеме.

Потоковые пересылки характеризуются гарантированной безошибочной передачей данных между хостом и функцией посредством обнаружения ошибок при передаче и повторного запроса информации.
Когда хост становится готовым принимать данные от функции, он в фазе передачи пакета-признака посылает функции IN-пакет. В ответ на это функция в фазе передачи данных передает хосту пакет с данными или, если она не может сделать этого, передает NAK- или STALL-пакет. NAK-пакет сообщает о временной неготовности функции передавать данные, а STALL-пакет сообщает о необходимости вмешательства хоста. Если хост успешно получил данные, то он в фазе согласования посылает функции ACK-пакет. В противном случае транзакция завершается.
Когда хост становится готовым передавать данные, он посылает функции OUT-пакет, сопровождаемый пакетом с данными. Если функция успешно получила данные, он отсылает хосту ACK-пакет, в противном случае отсылается NAK- или STALL-пакет.
Управляющие пересылки содержат не менее двух стадий Setup-стадия и статусная стадия. Между ними может также располагаться стадия передачи данных. Setup-стадия используется для выполнения SETUP-транзакции, в процессе которой пересылается информация в управляющую КТ функции. SETUP-транзакция содержит SETUP-пакет, пакет с данным и пакет согласования. Если пакет с данными получен функцией успешно, то она отсылает хосту ACK-пакет. В противном случае транзакция завершается.
В стадии передачи данных управляющие пересылки содержат одну или несколько IN- или OUT-транзакций, принцип передачи которых такой же, как и в потоковых пересылках. Все транзакции в стадии передачи данных должны производиться в одном направлении.
В статусной стадии производится последняя транзакция, которая использует те же принципы, что и в потоковых пересылках. Направление этой транзакции противоположно тому, которое использовалось в стадии передачи данных. Статусная стадия служит для сообщения о результате выполнения SETUP-стадии и стадии передачи данных. Статусная информация всегда передается от функции к хосту. При управляющей записи (Control Write Transfer) статусная информация передается в фазе передачи данных статусной стадии транзакции. При управляющем чтении (Control Read Transfer) статусная информация возвращается в фазе согласовании статусной стадии транзакции, после того как хост отправит пакет данных нулевой длины в предыдущей фазе передачи данных.
Пересылки с прерыванием могут содержать IN- или OUT-пересылки. При получении IN-пакета функция может вернуть пакет с данными, NAK-пакет или STALL-пакет. Если у функции нет информации, для которой требуется прерывание, то в фазе передачи данных функция возвращает NAK-пакет. Если работа КТ с прерыванием приостановлена, то функция возвращает STALL-пакет. При необходимости прерывания функция возвращает необходимую информацию в фазе передачи данных. Если хост успешно получил данные, то он посылает ACK-пакет. В противном случае согласующий пакет хостом не посылается.
Изохронные транзакции содержат фазу передачи признака и фазу передачи данных, но не имеют фазы согласования. Хост отсылает IN- или OUT-признак, после чего в фазе передачи данных КТ (для IN-признака) или хост (для OUT-признака) пересылает данные. Изохронные транзакции не поддерживают фазу согласования и повторные посылки данных в случае возникновения ошибок.

В связи с тем, что в интерфейсе USB реализован сложный протокол обмена информацией, в устройстве сопряжения с интерфейсом USB необходим микропроцессорный блок, обеспечивающий поддержку протокола. Поэтому основным вариантом при разработке устройства сопряжения является применение микроконтроллера, который будет обеспечивать поддержку протокола обмена. В настоящее время все основные производители микроконтроллеров выпускают продукцию, имеющую в своем составе блок USB ,например фирма Atmel производит контроллёр AT43355 на ядре AVR. Имеет встроенные USB-функцию и хаб с 2 внешними нисходящими портами, работающие в LS/FS-режимах, 1 кбайт ОЗУ, 24 кбайт ПЗУ, 32х8 регистров общего назначения, 27 программируемых выводов, последовательный и SPI-интерфейсы, 12-канальный 10-разрядный АЦП. Функция имеет 1 управлющую КТ и 3 программируемых КТ с буферами FIFO размером 64/64/8 байт.

ЦИФРОВОЙ ЗАПОМИНАЮЩИЙ ОСЦИЛЛОГРАФ ЛА-ОЦЗС
Устройство ЛА-ОЦЗ представляет собой цифровой запоминающий осциллограф, предназначенный для работы в составе IBM-совместимого компьютера. К компьютеру устройство подключается через стандартный параллельный принтерный порт LPT.Основное назначение прибора — исследование формы электрических сигналов путем визуального наблюдения и измерения их амплитудных и временных параметров.Принцип работы прибора заключается в том, что непрерывный (аналоговый) сигнал преобразуется в цифровую форму и полученные цифровые данные передаются в компьютер. Под управлением программного обеспечения цифровой сигнал обрабатывается и отображается на мониторе компьютера.Программное обеспечение, входящее в комплект поставки, позволяет использовать прибор как обычный осциллограф, спектроанализатор, регистратор и стробоскоп. Эквивалентное разрешение стробоскопа до 1 ГГц. Система маркеров позволяет проводить точные интерполяционные измерения, функция растяжки (зумирования) изображения позволяет детально исследовать форму сигналов. Поддерживается функция копирования осциллограмм сигналов в буфер обмена для использования другими приложениями операционной системы.
Минимальные требования к системе

IBM-совместимый персональный компьютер
Процессор Pentium 100 МГц или совместимый
Объем ОЗУ 32 Mб
Накопитель CD-ROM
8 Мб свободного дискового пространства
Свободный параллельный принтерный порт LPT
ОС Microsoft Windows95, Windows98, Windows ME
Мышь

Технические характеристики

Интерфейс с компьютером
Параллельный порт LPT

Потребляемая мощность
+5В; 1,9А

Габариты
158 х 62 х 259 мм

Масса (без блока питания)
не более 1 кг

Число входов
2 синхронных

Тип разъема
BNC

Входное сопротивление
1МОм, 30пФ

Полоса пропускания (-3 дБ)
50 МГц

Диапазоны входных напряжений
± 5,0В; ± 2,5В; ± 1,0В; ± 0,5В

Тип АЦП
Параллельный

Разрешение
8 бит

Время преобразования
20нс

Максимальная частота дискретизации одноканальном режиме (канал 0)
100МГц

Максимальная частота дискретизации в двухканальном режиме
50МГц

Максимальная частота дискретизации в режиме стробоскопа (эквивалентная)
до 1 ГГц

Объем памяти
128Кб/канал

Параметры

Параметр
Типовое Значение

Отношение сигнал/шум
47,5 дБ

Коэффициент гармоник
-55,0 дБ

Реальный динамический диапазон
57 дБ

Число эффективных разрядов
7,7

Проникание из канала в канал
-60 дБ

Источники

Internet http //www.rudshel.ru/russian/ — Центр АЦП ЗАО “Руднёв – Шиляев”
Internet http //elhelp.h1.ru/ — DeltaSoft /информация о USB/
Internet http //www.pageofmax.narod.ru/lpt.htm — Персональная страница Меметова Максима Евгеньвича

«