Экономика электроснабжения

МИНИСТЕРСТВО ВЫСШЕГО И
СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РУз.
ТАШКЕНТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Беруний.

Контрольная работа по предмету
»Задачи сбережения электроэнергии»

Выполнил студент 5го курса
заочного отделения
энергетического факультета
Огай Василия
Шифр 1950402

Ташкент 2000.

Экономия электроэнергии по отраслям народного хозяйства.

Машиностроение.
Неравномерное распределение электрической нагрузки в течение суток характерно для всего машиностроения. Максимальное потребление электроэнергии приходится на часы пиковой нагрузки энергосистем. В связи с этим число часов использования максимума активной нагрузки по предприятиям за год колеблется от 3100 до 4550, коэффициент неравномерности графика нагрузки составляет 0,178-0,525. Подавляющее большинство предприятий имеет утренний максимум по абсолютной величине больше вечернего. Графики нагрузки предприятий по качеству пиковых и полупиковых зон в течении суток мало различается, что свидетельствует о связи их по режимам электропотребления.
На базе электрификации промышленности происходила концентрация не только энергетических, но и производственных мощностей промышленности. О степени концентрации промышленности можно судить по тому, что число крупных промышленных предприятий с годовым потреблением электроэнергии свыше 20 млн. кВтч составляет 14 % от общего числа предприятий, а потребляют они 68 % электроэнергии, в то же время предприятие с годовым потреблением до 2 млн. кВтч составляют 26 % от общего числа предприятий, а потребляют они всего 3% электроэнергии.
Доля участия электроэнергии в производственных процессах отрасли характеризуется следующим электрификация силовых процессов к завершению (99,5%); лишь небольшая часть внутризаводского транспорта работает на дизельном топливе. Наряду с использованием электроэнергии для силовых процессов широкое распространение получает электротехнология – применение электроэнергии в процессах тепловой и химической обработки материалов. Увеличивается использование в технологических процессах токов высокой частоты. Начали широко новые технологические процессы с использованием ультразвука, плазмы, лазерного луча, сильного электрического поля. В увеличении доли технологического использования электроэнергии наглядно проявляются такие преимущества электроэнергии, как лёгкая регулируем ость процесса, точность поддержания режима, воспроизводимость результатов обработки, возможность защитить нагреваемые материалы от вредных воздействий среды, гигиеничность и безопасность обслуживания и как следствие этого – повышение качества продукции, обусловленное улучшением свойств термообработанных деталей. Наиболее перспективны современные электротехнологические процессы на базе порошковой металлургии. Приведём основные направления развития электрификации в машиностроении

Создание более производительного оборудования;

Улучшение структуры оборудования, за счёт внедрения оборудования, резко повышающего коэффициент использования металла;
Механизм вспомогательных ручных работ, занимающий большой удельный вес в отрасли;
Широкое внедрение методов электроплавки, электронагрева и термообработки материалов, обеспечивающих экономию металла, повышение качества продукции, автоматизацию производства и улучшению условия труда работающих;
Освоение и внедрение принципиально новых физических и химических приёмов обработки материалов, особенно сверх твёрдых и со сложной конфигурацией.

Первые три направления будут определять в основном дальнейшую динамику потребления электроэнергии на силовые нужды в станкоинструментальной промышленности; остальные направления масштабы и структуру использования электроэнергии на технологические нужды. Потребление электроэнергии на силовые и технологические нужды на предприятиях находят расчётным путём из-за отсутствия соответствующих приборов учёта электроэнергии. Имеющиеся на большинстве предприятий счётчики электроэнергии учитывают на общее потребление электроэнергии по заводу, цеху, участку и, как исключение, по отдельной технологической установке. Сложность раздельного учёта потребления электроэнергии состоит в том, что, во-первых, невозможно установить счётчик электроэнергии у каждой электропотребляющей установки, и во-вторых, иногда даже один электротехнологический объект является потребителем и силовой технологической электроэнергии. Поэтому распределение общего производственного электропотребления на силовые и технологические производства пропорционально мощности установок и числу часов их фактической работы, что не исключает некоторого отклонения расчётных данных от фактического расхода по видам потребляемой электроэнергии.
Основными причинами, обуславливающими малое число часов использования установленных энергетических мощностей, является снижение коэффициента сменности работы оборудования; превышение установленных энергетических мощностей в ряде случаев над необходимыми по технологическим условиям; малое число использования части вновь вводимых электротехнологических установок.
Уровень потерь энергии в машиностроении определяется двумя группами факторов. К первой группе факторов относятся конструктивные особенности находящегося в эксплуатации оборудования, правильный разбор по мощности, производительности, типу; уровень потерь здесь зависит в основном от того, насколько оборудование отвечает современным требованиям и правильно ли оно выбрано. Ко второй группе относятся организационные факторы процессов производства и потребление различных видов энергии, загрузка оборудования.
Повышение производительности труда и внедрение новых технологических процессов и оборудования в большой мере зависят от обеспечения производства энергией, правильного выбора энергоносителей, степени их использования.
На многих предприятиях ещё практикуется разработка технологических режимов, не учитывающих альтернативные варианты с меньшими расходами энергоресурсов. Значительную экономию энергии можно получить в промышленности путём небольшого усовершенствования технологии и прежде всего на основе рациональных методов и режимов эксплуатации технологического оборудования. По экспертным оценкам, такая экономия практически без капитальных затрат может составить около 15 % от стоимости потребляемой энергии.
Эффективное использование энергии до настоящего времени не входило в число главных факторов при выборе основного технологического оборудования. Например станки выбирали, как правило, исходя из условий обработки деталей наибольших размеров. Это приводило к недогрузке станочного парка, повышению удельного веса потерь холостого хода и перерасходу энергии. Приведение мощности привода технологического оборудования в соответствие с его фактической загрузкой освобождает большие резервы экономии энергии.
Эффективность использования энергии на предприятии зависит от уровня механизации и автоматизации производственных процессов. Актуальной задачей в области экономии энергии на предприятии является осуществление комплексной механизации и автоматизации производства, создание автоматических линий, участков и автоматизированных предприятий.
Снижение удельных расходов энергии на предприятии достигается переворотом ряда процессов высокотемпературного нагрева за счёт электроэнергии, улучшением технико-экономических показателей агрегатов, потребляющих различные виды энергии и топлива, за счёт укрупнения их единственных мощностей, интенсификации процессов нагрева и горения, изменение структуры потребления топлива в технологических аппаратах и изменения технологии производства.
Одной из постоянно возникающих задач при этом является определение экономической эффективности замены устаревшего энергетического оборудования. Анализ показал, что наиболее эффективными являются такие виды энергетического оборудования, которые окупаются в нормативный срок за счёт экономии энергии и топлива, обеспечивают высокую надёжность энергосбережения и приводят к снижению себестоимости.
С энергетической точки зрения желательно, чтобы число преобразования энергии на предприятии было минимальным, т.т. всякое преобразование энергии связано с её потерями. Чем меньше преобразований претерпевает энергия на предприятии, тем выше общий КПД энергоиспользования предприятия.
В современных условиях всё возрастающий эффект экономии топливно-энергетических ресурсов достигается путём проведения различных экономико-организационных мероприятий на предприятиях.
Рассмотрим основные направления экономии электроэнергии на предприятиях машиностроения

Совершенствование и рационализация технологических процессов. Потери электроэнергии, вызванные нерациональной технологией и организацией производства, в ряде случаев могут превышать потери энергетических процессов и даже полезный расход энергии. Так, применение на машиностроительных предприятиях индукционного способа термообработки деталей и закалки их токами высокой частоты вместо термообработки в печах сопротивления позволяет в 2-3 раза сократить расход электроэнергии.
Внедрение прогрессивных технологических режимов и методов работы оборудования. Сюда следует отнести повышение скорости резания на станочном оборудовании, сокращение числа припусков при прокате, введение оптимальных температурных режимов при электронагреве, термообработке металлов. Исследования показывают, что увеличение скорости резания на станках с 50 до 200 м/мин снижает расход электроэнергии на 17 %, а применение скоростных плавок при оптимальном режиме в сочетании с организационными мероприятиями на 20-30 % сокращает удельный расход электроэнергии.
Улучшение качественных характеристик используемого оборудования. Анализ энергобалансов электротермических печей, которые являются самыми энергоёмкими электроустановками показывает, что потери теплоты через поверхность составляют около 48 % от всей потребляемой электроэнергии. Соответственно резервы экономии здесь чрезвычайно велики.
Совершенствование конструкций промышленных зданий и сооружений. Опыт зарубежной энергетики показывает, что только за счёт применения таких очевидных мероприятий, как усиление теплоизоляции зданий, устройство уплотняющих окон и дверей, рациональное сокращение площади окон и т.д., можно значительно снизить (до 50%) потребление энергии на отопление и кондинцирования промышленных зданий и сооружений.
Внедрение прямого технологического использования электроэнергии.. Наибольший эффект от применения электроэнергии достигается в том случае, когда электроэнергия используется непосредственно на выполнение технологической операции.
Уменьшение объёма металла, спиленного при обработке. В результате замены механической обработки ковкой и штамповкой, а также точным литьём за счёт уменьшения обработки резанием удельный расход электроэнергии сокращается на 15-20%.

Согласования мощности двигателей станков только по их номинальным нагрузкам недостаточно. При согласовании необходимо учитывать режим работы и характеристики двигателя и привода.при уменьшения нагрузки снижается КПД электродвигателя и рабочей машины и увеличивается расход электроэнергии.

Замена асинхронных двигателей синхронными. Это мероприятие может осуществляться без предварительных технико-экономических расчётов. Основными достоинствами синхронных двигателей, кроме выдачи в сеть реактивной мощности, являются более высокий КПД (по сравнению с асинхронными) – на 1-3% выше и меньшая чувствительность к изменению напряжения в сети.
Установка ограничителей холостого хода на станках всегда оправдана экономией электроэнергии, если по технологической операции время составляет 10 с и более.
Рационализация структуры режимов и эксплуатации осветительных установок. Замена ламп накаливания люминесцентными и ртутными, содержание светильников в чистоте, автоматизация включения и отключения освещения могут принести ощутимую экономию электроэнергии, расходуемой на освещение, составляет на машиностроительном предприятии до 10%.

Практическая реализация перечисленных направлений экономии электроэнергии на предприятиях машиностроения возможна на основе полного внутриотраслевого хозрасчёта, способствующего личной заинтересованности технологов, экономистов, энергетиков и организаторов производства в их внедрении.

Цветная металлургия.
Цветная металлургия – одна из ведущих отраслей тяжёлой промышленности, характеризующаяся значительными затратами энергетических ресурсов. В настоящее время цветная металлургия потребляет около 15% от всей электроэнергии, расходуемой в промышленности. Причём 93% электроэнергии поступает от энергетических систем , а 7% от собственных источников.
Особенно энергоёмкими является производство аммония, магния, меди, никеля и цинка. На получение этих металлов расходуется 85% всех энергоресурсов, потребляемых цветной металлургией. Постоянный рост электропотребления связан с заменой процессов, основанных на прямом использовании топлива, электротехнологическими, дальнейшей электрофикацией и автоматизацией производственных процессов. Возрастает одиночная мощность агрегатов питания электротехнологических установок. Создан опытно-промышленный полупроводниковый агрегат питания серий электролизеров для алюминия типа ДВ1 на выпрямленный ток 63 кассовый аппарат и напряжение 850 кВ, т.е. выходной мощностью 53000 кВт.
Для получения цветных металлов наиболее распространён электролизерный способ, который требует расхода большего количества электроэнергии на единицу продукции. Так при получении алюминия, удельный расход электроэнергии колеблется от 15000 до 20000 кВтч/т, в зависимости от прогрессивности принятой технологии.
Проведённая в 60-ых годах модернизация преобразовательных подстанций серий электролизеров, за счёт замены ртутных, электромеханических и электромагнитных преобразователей полупроводниковыми агрегатами питания позволила увеличить КПД, уменьшить значительно затраты на обслуживание и улучшить условия труда. Экономический эффект составил от 2 до 10 руб. на 1 кВт установленной мощности полупроводникового выпрямительного агрегата. Создание в дальнейшем автоматизированных систем позволило применить не стационарные режимы работы серий электролизеров, а следовательно, оптимизировать режим технологии получения цветных металлов.
Однако внедрение полупроводниковых агрегатов питания и автоматизированных тиристорных систем требует нового подхода к проектированию и эксплуатации систем энергоснабжения. Без этого существенно снижаются показатели качества электроэнергии (наблюдаются отклонения, колебания, несимметрия и искажение формы напряжения в сетях 6-10 кВ). Это ведёт к увеличению потерь электроэнергии в системах электроснабжения, уменьшению надёжности электрооборудования и кабельных линий в основном за счёт содержания недопустимого условия гармонических составляющих напряжения. Несинусоидальность формы кривой напряжения 6-10 кВ имеются во всех системах электроснабжения предприятий цветной металлургии с электролизерным производством, экспериментальные исследования и теоретические расчёты показывают, что в существующих системах электроснабжения на шинах переменного тока преобразовательных подстанций значение коэффициента несинусоидальности напряжения превышает допустимое в 1,5-2 раза. Полупроводниковые агрегаты питания мощных серий электролизеров алюминия влияют на форму в сетях напряжением 110-220 кВ внешних систем электроснабжения.
Следует также отметить, что кроме тех неприятных явлений, о которых говорилось ранее, несинусоидальность кривой напряжения вызывает увеличение в 2-3 раза тока кз в системах электроснабжения в изолированной нейтралью, по сравнению с расчётным током синусоидальном напряжении, что резко понижает надёжность работы кабельных линий 6-10 кВ.
Экономия энергии в цветных металлах путём электролиза можно достичь как за счёт повышение КПД технологического процесса, так и за счёт совершенствования систем электросбережения серий электролизеров. Это возможно за счёт применения следующих способов

Замены преобразовательных агрегатов на подстанциях на современные;
Использование электрических схем преобразователей и систем электроснабжения, обеспечивающих минимальное искажение формы кривой напряжения.
Применение методов регулирования, обеспечивающих высокий коэффициент мощности.

Эти способы должны учитываться как при проектировании системы электроснабжения, так и в процессе их эксплуатации.
Ряд отечественных предприятий цветной металлургии подтвердил технико-экономическую целесообразность внедрения САЛАП для электролиза цветных металлов. При электролизе меди и цинка экономический эффект на один агрегат в год составляет 200-400 тыс. руб., а при электролизе кадмия – 200 тыс. руб.
Применение для электролиза постоянного тока требует использования средств выпрямления и регулирования. Современные выпрямители, особенно при условии регулирования выходного напряжения, обладает относительно низким коэффициентом мощности. Для его увеличение и следовательно уменьшения котлов ЭЭ применяют статические компенсирующие устройства и батареи конденсаторов. Последние весьма чувствительны к наличию и амплитуды высших гармонических в кривой напряжения. Могут возникать опасные резонансные явления на отдельных гармонических составляющих, которые приводят к выходу из строя конденсаторов, т.т. прекращается компенсация реактивной мощности.
Если принять, что на выходе выпрямителя имеется идеальный ток, т.е. в цепь постоянного тока включен реактор с бесконечно большой индуктивностью, то первичный ток выпрямителя будет предоставлен в виде кривой, имеющий ступенчатую прямоугольную форму. Это ток можно предоставить в виде в виде суммы гармонических, в которые входит первая основная гармоническая, имеющая ту же частоту, что и напряжение, и внешние гармонические имеющие частоты, кратные основной.
В действительности имеется процесс коммутации вентилей, фазное регулирование напряжения на входе выпрямителя, а симметрия питающего напряжения, а так же вся асимметрия питающих проводов, поэтому в кривой первичного тока могут иметь место и другие гармонические составляющие.
Амплитуды гармонических составляющих в сети питания зависят как от амплитуды гармонических первичного тока, так и от схемы электроснабжения.
Широко распространенный способ обеспечения 12-фазного режима выпрямления – соединения фазной вентильной обмотки, каждого преобразования трансформатора в звезду, а другие колбвины в треугольник. При таком исполнении трансформаторы преобразователи, установившийся на подстанциях, унифицированы. Для достижения числа фаз схемы выпрямления более 12, следует применять фазоповоротные трансформаторы и различные сочетания сетевых линий, вентильных обмоток преобразовательных трансформаторов. Однако все эти решения изменённой конструкции трансформаторного оборудования и влияет но его технико-экономические показатели, т.е. увеличивается стоимость трансформатора, а следовательно и потери энергии в нём. Поэтому, как показывают расчёты минимумы приведённых годовых затрат достигаются при 6-ти фазной схемы выпрямления. С учётом работы статических компенсаторов целесообразным является использование 12-ти и 24-ёх фазных схем выпрямления.
Коэффициент мощности полупроводниковых преобразовательных агрегатов электролизеров уменьшается за счёт нарушения работы системы управления реакторами насыщения. В процессе работы происходит перераспределение нагрузки между выпрямительными мостами одного и того же агрегата, причём отдельные выпрямительные мосты перегружаются за 70% и более. Это резко увеличивает угол коммутации, в результате чего cos  уменьшается на 0,65-0,80.
Уменьшение cos  определяется случайными процессами происходящими в процессе работы агрегата. Проведённые исследования показывают, что в случае частичного регулирования агрегатов получаем следующую вероятность состояния работы агрегата с Км0,09-13% времени, с 0,91 >Км>0,7-68% времени м. с Км < ,07-19% времени.
Поэтому рекомендуется регулярно (не менее одного раза в три года) проводить полную проверку оборудования и систем автоматического регулирования. В этом случае получим следующую вероятность составления работы агрегатов с Км  91-18% времени, с 0,91>Км>0,7-81% времени и с Км <0,7-1,0% времени.
Проведение такой части проверок агрегатов нецелесообразно, так как они требуют остановки агрегата, что значительно снижает эффективность их использования.
Внедрение полной принудительной проверки агрегатов, управляемых реакторами насыщения, повышает средневзвешенный Км на 0,14, а в расчёте обратного тока по 0,11. Наиболее совершенным является совмещения преобразователя и силового трансформатора. Такие агрегаты типа РЕК ТИФОМЕР всё шире применяется за рубежом при электролизе цветных металлов.
Потери энергии в системе питания электролизеров можно уменьшить, если питать их сглаженным выпрямленным током.

Текстильная промышленность.
Характерными особенностями технологического процесса текстильного производства является его многоступенчатость, различная энергоёмкость технологического оборудования, большое количество факторов, влияющих на него, широта ассортимента сырья, полуфабрикатов и 8готовой продукции. Поэтому удельное энергопотребление на каждом данном производстве, являясь сложной функцией многих переменных, может резко изменяться при одних и тех же значениях общего объёма выпускаемой продукции. Эти факторы усложняют нормирование и учёт расхода электроэнергии, что приводит к завышению норм расхода по сравнению с достигнутым уровнем, истинных затрат электроэнергии на 1 продукцию, бесконтрольного расходования электроэнергии. Следует иметь ввиду, что нормирование необходимо осуществлять в натуральном выражении.
Анализ структуры электропотребления в текстильной промышленности показывает, что основная его доля приходится на производство хлопчатобумажных тканей.
Прядильное и ткацкое производство используют в основном асинхронные двигатели. Правильно спроектированный и эксплуатируемый электропривод коренным образом изменяет условия работы повышая производительность труда, улучшая качество продукции и облегчая труд рабочего.
Современно прядильное производство характеризуется переходом к автоматизации производства прядей. Техническое перевооружение текстильной промышленности осуществляется на базе широкого внедрения высокопроизводительных пневмомеханических машин (ППМ) и бесчелночных ткацких станков.

Краткие выводы.
Нормирование электропотребления высчитанное на базе научно-обоснованного электробаланса является важнейшим фактором, планирования номинального расхода, выбора средств и способа экономии, а также организации контроля за потребляемой электроэнергией.
Регулирование напряжения частей на выводах промышленных установок осуществляемое на основе современных тиристорных регуляторов позволяет наиболее экономичным способом автоматизировать управление технологическими процессами промышленных производств.
Экономическая эффективность использования синхронных двигателей в значительной мере определяется системой возбуждения. Использование современных тиристорных и бесщёточных возбудительных устройств позволяет не только повысить КПД двигателя, но и автоматизировать управление системы возбуждения как в режиме нормального возбуждения, так и режимах форсированного возбуждения и гашения поля.
Технологические процессы непрерывных производств должны обладать устойчивостью по отношению к кратковременным перерывам электроснабжения, обусловленным работой релейной защиты и автоматики системы электроснабжения. Устойчивость технологических процессов обеспечивается реализацией самозапуска электродвигателей технологических механизмов. Выборы средств и способов успешного самозапуска электродвигателей предотвращают срывы технологических процессов производств и исключает режимы нерационального потребления, вызванные этими срывами.
Повышение КПД и cjs  асинхронных двигателей с фазным ротором можно достигнуть переводом их в синхронные режимы.
Наибольшей экономической эффективностью обладает схема синхронизации при последовательном возбуждении роторной обмотки от обмотки статора.
Резервы экономии электроэнергии на отраслевом уровне народного хозяйства могут быть реализованы на основе полного внутриотраслевого хозрасчёта, способствующего личной заинтересованности технологов, экономистов, энергетиков и организаторов производства в их использовании.
Для того, чтобы экономить электроэнергию необходимо прежде всего знать, на какие цели и в каком количестве она расходуется. Определение статей расхода электроэнергии и является основной задачей составления электробаланса промышленного предприятия.
Ежегодное составление электробаланса позволяет наблюдать за результатами мероприятий по рационализации электрохозяйства промышленого предприятия. Так, например, анализирую изменение общего и удельного расходов электроэнергии на производство сжатого воздуха, можно сделать выбор о рационализации мероприятий, проводимых в компрессорных установках с целью уменьшения расходов электроэнергии.
Электробаланс промышленного предприятия должен состоять из приходной и расходной частей (активной и реактивной мощностей). В приходную часть включается электроэнергия полученная от энергосистемы или от сетей других потребителей, а также выработанная электрическими установками предприятия (генераторы промышленных ТЭС и ГЭС, СК и конденсаторы). Приходную и расходную часть составляют по показаниям счётчиков активной и реактивной энергии. Приходная часть электробаланса составляется для активной энергии (по промышленному предприятию, по цехам предприятия, по отдельным энергёмким агрегатам, по особому указанию главного энергетика предприятия или инспекции энергосбыта) и для реактивной энергии (по промышленному предприятию, по цехам предприятия, по отдельным энергёмким агрегатам, по особому указанию главного энергетика предприятия или инспекции энергосбыта).
Расходная часть электробаланса активной электроэнергии должна быть разделена на следующие статьи расхода

Прямые затраты электроэнергии на основную технологическую продукцию с выделением полезного расхода электроэнергии на выпуск продукции без учёта потерь в различных звеньях энергоёмкого технологического оборудования (электрические печи, компрессорные и насосные установки, прокатные станы и другие крупные потребители электроэнергии).
косвенные затраты электроэнергии на основной технологический процесс в следствии его несовершенства или нарушения технологических форм (влажная шихта, недогрев слитков при прокате и т.п.).
затраты электроэнергии на вспомогательные нужды (вентиляция помещений цехов, цеховой транспорт, освещение и т.п.).
потери электроэнергии в элементах систем электроснабжения (линиях, трансформаторах, реакторах, компенсирующих устройствах и двигателях).
Отпуск электроэнергии сторонним потребителям (столовые, клубы, посёлки, городской электрический транспорт т.п.)

Наличие всех пяти статей расхода электроэнергии при составлении электробаланса не является обязательным.
Когда существующая схема учёта расхода электроэнергии не позволяет выделить отдельных потребителей (например, питание от общих цеховых шин электрокранов и технологического оборудования), необходимо сделать соответствующее примечание в общих замечаниях по электробалансу. Удельный расход электроэнергии в электробалансе должен быть отнесён на единицу продукции, сопоставляемую с соответствующими показателями других цехов и заводов.

МИНИСТЕРСТВО ВЫСШЕГО И
СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РУз.
ТАШКЕНТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Беруний.

Реферат № 1
по предмету
»Задачи сбережения электроэнергии»

Выполнил студент 5го курса
заочного отделения
энергетического факультета
Огай Василий
Шифр 1950402

Экономия электрической энергии в системах
промышленного электроснабжения.

Общие положения.

Около 70% электроэнергии, вырабатываемой электростанциями Советского Союза, расходуется на промышленных предприятиях. Из этого можно заключить, какое огромное значение имеют вопросы экономии электроэнергии в промышленных установках. Решения XXVI съезда КПСС по экономии электроэнергии относятся, прежде всего, к промышленным предприятиям. Уменьшение потребления электроэнергии путём рационального её использования позволит расширить производство необходимой стране продукции, даст возможность шире применять электроэнергию в быту советских людей. Экономия электропередачи на промышленных предприятиях может быть получена за счёт уменьшения потребления её приемниками (электродвигатели, электропечи, электросветильники и пр.) и уменьшение потерь электроэнергии в различных элементах системы электроснабжения (трансформаторы, реакторы, линии и т.д.)
При передаче электроэнергии от источников питания до приёмников теряется 10-15% электроэнергии, отпущенной с шин электростанций; остальная часть (85-90 % электроэнергии)расходуется приёмниками. Поэтому задача экономии электроэнергии на промышленных предприятиях должна решаться технологами и энергетиками путём рационального её использования.
Экономия только 1 % электроэнергии на каждом предприятии может в совокупности освободить огромные мощности в энергосистемах. Ниже приведены методы и способы экономии электроэнергии в элементах системы электроснабжения.

Экономия электроэнергии в трансформаторах.

На промышленном предприятии силовые трансформаторы устанавливают на главных понизительных, на цеховых и на специальных подстанциях. Преобразовательных электропечных, сварочных и др. Потери электроэнергии в трансформаторах являются неизбежными, однако размер их должен быть доведён до возможного минимума путём правильного выбора мощности и числа силовых трансформаторов, а также рационального режима их работы. Кроме того, следует стремиться к уменьшению потерь электроэнергии путём исключения холостого хода трансформаторов при малых загрузках. Это мероприятие имеет особое значение при эксплуатации цеховых трансформаторов предприятий, работающих в одну или две смены, а также в выходные дни.
Обычно на предприятиях в свободное от работы время или в выходные дни ведутся ремонтные работы, испытания оборудования и т.д.. Для производства таких работ также требуется электроэнергия, но в значительно в меньшем количестве, чем в рабочие дни. Включение всех цеховых трансформаторов вызывает большие нерациональные потери за счёт потерь холостого хода трансформаторов. Для устранения таких потерь рекомендуется проектировать новые схемы электроснабжения предусматривая резервные связи (перемычки) на стороне низкого напряжения цеховых трансформаторов. При этом целесообразно питать установки для ремонтных работ, ночного, охранного и дежурного освещения по всей территории предприятия и т.п., включая работу только 1, 2-ух трансформаторов в разных точках сети.
В условиях действующих промышленных предприятий при отсутствии запроектированной схемы такого питания можно путём незначительной реконструкции сети обеспечить целесообразный режим работы силовых трансформаторов. Ограничение холостого хода имеет большое значение также для таких установок, сварочные и электропечные аппараты.
Следует отметить, что работа трансформаторов в режиме холостого хода или близком к нему вызывает изменение потерь не только в самом трансформаторе, но и во всей системе питания из-за низкого коэффициента мощности при холостом ходе трансформатора

Экономия электроэнергии в линиях.

Потери электроэнергии в линиях зависят от значения сопротивлений и тока, пропускаемого через линии. Сопротивление действующих линий может считаться практически постоянным. Отсюда следует, что для уменьшения потерь электроэнергии возможен один путь – уменьшение протекающего через них тока. Уменьшить значение тока можно например использованием в работе значительного количества резервных линий. При наличии параллельных линий желательно из соображений экономии электроэнергии держать их включенными параллельно. При проектировании системы электроснабжения предприятия необходимо выбирать вариант, при котором отсутствуют реакторы, или вариант с минимальными потерями в реакторах. С этой точки зрения рассматриваемые варианты должны обязательно сопоставляться по технико-экономическим показателям. Так например система электроснабжения предприятия на напряжение 6 кВ с реакторами должна сравниваться с системой электроснабжения на напряжение 20 кВ без реакторов.

Экономия электроэнергии в шинах.

При питании мощных приёмников электроэнергии (электрические печи и пр.), как правило, применяют многополюсные шинопроводы. Если применять расположение шин, как указано на рис. 14.1 а, то потери электроэнергии в таком шинопроводе будут значительно больше, чем при расположении показанном на рис. 14.1 б. Это объясняется тем, что при расположении шин, показанном на 14.1 а сильно сказывается »эффект близости», при котором резко возрастает индуктивное сопротивление шин и соответственно увеличивается реактивная составляющая тока, что в конечном счёте приводит к увеличению общего тока и соответственно потерь мощности и энергии.
При расположении шин, приведённом на рис. 14.1 б, взаимодействие магнитных полей таково, что их действия взаимно уничтожаются и увеличение реактивного тока незначительно. Потери мощности и электроэнергии в этом случае уменьшаются почти вдвое по сравнению с расположением на рис. 14.1 а.
А В С А В С А В С А В С

а) б)

Рис. 14.1 Шихтовка полос шин и шинопроводов.
а) Неправильная, имеющая повышенные потери электроэнергии;
б) правильная.

Экономия электроэнергии в трёхфазных сетях напряжением до 1000 В с несимметричной нагрузкой.

При неравномерном распределении нагрузок по фазам трёхфазной системы, потери электроэнергии больше, чем при симметричной нагрузке. Равномерность загрузки фаз должна быть обеспечена в первую очередь за счёт правильного распределения однофазных и двухфазных нагрузок по фазам. Вторым мероприятием для уменьшения асимметрии в сетях напряжением до 1000 В является установка нейтраллеров на вводах заземление свинцовой оболочки кабеля. Экономическая целесообразность второго мероприятия определяется соотношением между затратами на установку нейтраллеров и стоимостью сэкономленной электроэнергии в результате устранения асимметрии нагрузки.
Мероприятия по выравниванию нагрузки фаз целесообразно проводить в трансформаторах, загруженных более чем на 30 % номинальной мощности, неравномерностью нагрузки можно пренебречь, так как нагрузочные потери незначительно превышают потери холостого хода.

Экономия электроэнергии за счёт применения повышенных напряжений.

Установка понижающих трансформаторов с высшим напряжением 110, 32, 10 и 6 кВ вблизи приёмников электростанции и сокращение длины цеховых сетей напряжением 0,69-0,23 кВ дают значительную экономию электроэнергии. Однако, чем выше напряжение питающих сетей, тем дороже электрооборудование (кабельные и воздушные линии, выключатели и т.д.). Рекомендованные в своё время для глубокого ввода напряжение 35 кВ не нашло широкого применения в системах промышленного электроснабжения, так как оказалась слишком высокой для большинства промышленных предприятий. Эксплуатация систем промышленного электроснабжения показала, цеховых подстанций целесообразно ограничивать мощность (принцип разукружения подстанций) используемых трансформаторов 1000 кВА с вторичным напряжением 4000 В и 1800-2500 кВА с вторичным напряжением 35 кВ требуется ток равный
Ip = = 30 А
При таких незначительных токах для питания цеховых подстанций целесообразно было бы применять воздушные линии со стальными проводами, так как кабели с медными жилами на напряжение 35 кВ имеют минимально допустимое сечение 370 мм2 с пропускной способностью 11800 кВА, а кабели с алюминиевыми жилами – 350 мм2 с пропускной способностью 8000 кВА.
Однако прокладка по территории промышленных предприятий воздушных линий напряжением 35 кВ с П-образными и АП-образными опорами практически исключена. Кабелей со стальными жилами напряжением на 35 кВ промышленность не изготовляет. Эти обстоятельства в основном и послужили причиной того, что напряжение 35 кВ не получили широкого применения для распределительных внутренних сетей. Для осуществления глубокого ввода на промышленных предприятиях рационально применять напряжение не 35 кВ, а 20 или 18 кВ (10,5 = 18 кВ).
Напряжение 20 кВ, как показала практика эксплуатации систем электроснабжения в СССР и за рубежом, позволяет сооружать линии с простыми, дешёвыми свечеобразными опорами (подобно опорам линий 6 и 10 кВ) небольших габаритов, что важно в условиях промышленного предприятия, территория которого, как правило, заполнена различными сооружениями и коммуникациями.
В этом случае для питания трансформаторов мощностью 1800 кВА потребуется ток, равный
Iр =  58 А
Минимальные сечения алюминиевого провода 16-25 мм2, выбранные по условиям механической прочности и экономической целесообразности, будут близки к наименьшим сечениям по допустимой плотности тока. Стоимость отключающих аппаратов на напряжение 230 кВ значительно ниже, чем на напряжение 35 кВ.
Применение напряжение 20 кВ для сетей промышленных предприятий позволяет выполнит решение руководящих органов о сокращении расходов электроэнергии на потери в электрических сетях промышленных предприятий.
Применение напряжения 66 В в цеховых сетях также значительно сокращает потери электроэнергии и расход цветового металла. Опыт эксплуатации цеховых сетей напряжением 660 В в ряде отраслей промышленности доказал бесспорные преимущества этого напряжения.
Однако в настоящее время в СССР для распределительных сетей, которые являются наиболее протяжёнными, в основном применяются напряжения 6 и 10, реже 35 кВ.
Напряжение 6 кВ с точки зрения экономии электроэнергии не является перспективным, но занимает значительное место в системах электроснабжения (СЭС) всех категорий. Например в Мособлэнерго оно составляет около 80 %, а в г. Саратове – около 70 % и т.д. Поэтому анализ сетей напряжением 6 кВ нами ведётся для того, чтобы показать возможности экономии электроэнергии в распределительных сетях при переходе на напряжение 10 кВ.
Современный быстрый рост электрических нагрузок приводит нередко к техническому пределу использования существующих СЭС. Для улучшения качества напряжения (например в системе Мособлэнерго отклонения напряжения составляют 15-20 %) применяют регулирование напряжения у силовых трансформаторов, а для обеспечения питания новых потребителей сооружают параллельно прокладываемые линии. Однако эти меры не решают проблемы обеспечения промышленных предприятий и городов электроэнергией требуемого количества и качества.
Использование в этих случаях напряжения 20 кВ в распределительных сетях позволяет не только значительно уменьшить потери электроэнергии в линиях, но и существенно сократить число трансформаций за счёт укрупнения трансформаторных подстанций. В 1975 году было указание перевести распределительные сети с напряжения 6 кВ на напряжение 10 кВ. Это решение, хотя и является правильным, недостаточно, так как требует значительных затрат на реконструкцию сетей, к моменту завершения которой, в связи с постоянным ростом нагрузок может потребоваться дальнейшее повышение напряжения.
По анализу перевода электрических сетей с напряжения 6 кВ на 20 кВ выполнено много научно-исследовательских работ. Проведённые расчёты при исследовании систем электроснабжения Мособлэнерго, полученные в МЭИ, позволили сделать заключение о том, что при заменен напряжение 6 кВ на 20 кВ экономия электроэнергии составит 19,35 млн.руб.
За срок амортизации (около 25 лет) с учётом динамики роста нагрузок общая экономия в результате сокращения составит примерно 2 млрд.руб.
Для реконструкции СЭС проектные организации нередко принимают бесперспективные решения. Так, например в проекте реконструкции систем электроснабжения г. Саратова рекомендован переход на напряжение 10 кВ. Однако сети напряжением 6 кВ в этот период составляли в СЭС г. Саратова 80 % и только 20 % сетей было выполнено на напряжение 10 кВ.
Перевод сетей города на напряжение 10 кВ займёт не менее 10 лет, и мощность потребляемая городом к окончанию его перевода на напряжение 10 кВ, потребует дальнейшего повышения напряжения. Расчёты (на примере части города) показали, что перевод сетей г. Саратова на напряжение 20 кВ был бы значительно экономичнее, затраты на СЭС 20 кВ были бы рациональными на протяжении 25-30 лет.
Основные возражения электроснабжающих организаций и ведомств, производящих и употребляющих электроэнергию, заключается в следующем в СССР не выпускают трансформаторы, кабели и аппаратуру на 20 кВ (трансформаторы тока и напряжения, разъединители, изоляторы, реакторы, предохранители и пр.). На эти возражения можно ответить следующим образом

Трансформаторы напряжением 220/110/35 кВ выпускаемые Министерством электротехнической промышленности, можно за несколько часов переключить со звезды на треугольник и получить трансформаторы напряжением 220-110/20 кВ.
Затруднений по выпуску кабелей 20 кВ нет. В настоящее время кабели на напряжение 20 кВ у нас выпускаются, но цена их завышена..
Измерительные трансформаторы напряжения на 20 кВ в СССР выпускаются серийно.
Измерительные трансформаторы тока на 20 кВ в СССР также выпускаются серийно. Не выпускаются на эти напряжения лишь трансформаторы тока на малые токи (50/5, 100/5 и т.д.), однако производство их на базе выпускаемых не вызовет особых затруднений.
При производстве комплектных распределительных устройств разъединители не требуются. Для других случаев стоимость на напряжение 20 кВ и процесс его производства совершенно не измениться по сравнению с разъединителями на напряжение 10 кВ, так как высота изолятора изменяется мало, а масса фарфора возрастает всего на 2 %.
Изоляторы на напряжение 20 кВ могут выпускаться в любом необходимом количестве, при этом уменьшится число выпускаемых изоляторов на напряжение 6 кВ.
Выпуск выключателей на напряжение 20 кВ и токи 400-2000 А действительно потребуется. Выключатели на токи выше 2000 А в СССР серийно не изготовляются. На небольшой период времени (2-3 года) можно воспользоваться выключателями на токи менее 2000 А, производимыми серийно в соцстранах, например в Болгарии. Применение выключателей на напряжение 20 кВ приведёт к резкому уменьшению количества выключателей в СЭС. При этом они будут обеспечивать значительно большую пропускную способность. Схемы электроснабжения станут проще и надёжнее. Затраты цветного металла уменьшаться.
Реакторов на напряжение 20 кВ может и не потребоваться, если исследовать установку двух последовательно включенных реакторов напряжением 6-10 кВ, выпускаемых нашей промышленностью.
Положение с плавкими предохранителями аналогично положению с выключателями, но значительно проще в решении. Удорожание предохранителей составляет не более 1 %.

Сокращение или исключение дополнительных устройств в СЭС, которые расходуют значительное количество электроэнергии.

В настоящее время при симметрировании трёхфазной системы применяют симметрирующие устройства (СУ). В этом между цеховым трансформатором и приёмниками в СУ теряется дополнительно не менее 10 % электроэнергии и требуется установка (будем говорить упрощённо) ещё одного устройства по мощности, равного мощности питающего трансформатора. Исключить СУ можно с заменой питающего трансформатора со схемой соединения обмоток звезда–звезда трансформатором со схемой соединения обмоток звезда–зигзаг. При этом потери и стоимость трансформатора возрастут на 2-3 %. Но за счёт исключения СУ сокращаются потери электроэнергии на 5-8 % и отпадает необходимость в производстве симметрирующего оборудования.
Аналогичное положение имеет место при установки дополнительных фильтрокомпенсирующих устройств (ФКУ) при несинусоидальности формы кривой тока и напряжения. Устанавливая выпрямительные устройства по 12-24 фазной схеме, можно значительно сократить несинусоидальность и обойтись без ФКУ.

Внесение изменений в тарифную систему оплаты за электроэнергию потребителями, питающимися от энергосистем.

Не только шаг стандартных номинальных мощностей трансформаторов, но проводимая тарифная политика способствует завышению устанавливаемых мощностей трансформаторов. В настоящее время потребитель штрафуется в десятикратном размере за перерасход электроэнергии (даже кратковременный), а при её недоиспользовании взимается штраф в полном размере неупотребляемой электроэнергии.
На основании приведённых нами научно-исследовательских работ можно утверждать, что и штрафы и сокращённая шкала номинальных мощностей трансформаторов приводят к низкому коэффициенту использования трансформаторной мощности.

Влияние качества электроэнергии на её перерасход.

Всякое ухудшение качества электроэнергии влечёт за собой её перерасход. Такое положение справедливо и для тех случаев, когда это ухудшение лежит в пределах нормы и соответствует ГОСТ. При перерасчётах, связанных с проектированием и эксплуатацией СЭС, не учитывают потери, возникающие в устройствах, применяемых для поддержания напряжения на допустимом уровне. Так, например, для трансформаторов с устройствами РПН это потери в регулирующих устройствах.
На основании большого количества исследований, проведённых в МЭИ, можно утверждать, что установка регулирующих устройств любого типа (за исключением технологических) обусловлена выбором нерационального номинального напряжения для СЭС. Поэтому при проектировании и эксплуатации СЭС следует по возможности не применять регулирующие устройства (симметрирующие, фильтрокомпенсирующие и т.д.), так как они приводят к дополнительным капиталовложениям, загружают заводы и министерства электротехнической промышленности ненужными заказами, увеличивают расход чёрных и цветных металлов, изоляции и самое главное, вызывают большие потери электроэнергии.
В последнее время обращают внимание и на такой показатель качества, как отклонение частоты напряжения от номинальных значений, который также приводят к потерям электроэнергии. Производственные затраты обусловленные некачественной электроэнергией не оцениваются и не учитываются, что на наш взгляд, делать необходимо. Для этого целесообразно разработать приборы, которые на каждом производстве давали бы возможность сопоставлять количество и качество продукции предприятия, как функцию от качества электроэнергии.
Существующие в настоящее время санкции, направленные на повышение качества электроэнергии, являются, как правило, односторонними, например, штрафование потребителей за перерасход или недоиспользование заявленной электроэнергии, в то время, как питающие энергосистемы не несут никакой материальной ответственности за плохое качество отпускаемой электроэнергии.

Влияние электробаланса промышленного предприятия на экономию электроэнергии.

Для того чтобы сэкономить электроэнергию, необходимо прежде всего знать, на какие цели и в каком количестве она расходуется. Определение статей расхода электроэнергии и является основной задачей составления электробаланса промышленных предприятий.
Ежегодное составление электробаланса позволяет наблюдать за результатами мероприятий по рационализации электрохозяйства промышленного предприятия. Так например, анализируя изменение общего и удельного расходов электроэнергии на производство сжатого воздуха, можно сделать вывод о рациональности мероприятий, проводимых в компрессорных установках с целью уменьшения расхода электроэнергии.
Электробаланс промышленного предприятия должен состоять из приходной и расходной частей (активной и реактивной мощностей). В приходную часть включается электроэнергия полученная от энергосистемы или от сетей других потребителей, а также выработанная электрическими установками предприятия (генераторы промышленных ТЭС и ГЭС, СК и конденсаторы).

ЛИТЕРАТУРА.

А.А.Фёдоров, В.В.Каменева »Основы электроснабжения промышленных предприятий» Москва, Энергоиздат, 1984 г.